issue_comments
466 rows where user = 14371165 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date)
user 1
- Illviljan · 466 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1280906370 | https://github.com/pydata/xarray/pull/7173#issuecomment-1280906370 | https://api.github.com/repos/pydata/xarray/issues/7173 | IC_kwDOAMm_X85MWRSC | Illviljan 14371165 | 2022-10-17T13:57:47Z | 2024-03-20T23:12:49Z | MEMBER | Scatter vs. Lines:
```python
ds = xr.tutorial.scatter_example_dataset(seed=42)
hue_ = "y"
x_ = "y"
size_="y"
z_ = "z"
fig = plt.figure()
ax = fig.add_subplot(1, 2, 1, projection='3d')
ds.A.sel(w="one").plot.lines(x=x_, z=z_, hue=hue_, linewidth=size_, ax=ax)
ax = fig.add_subplot(1, 2, 2, projection='3d')
ds.A.sel(w="one").plot.scatter(x=x_, z=z_, hue=hue_, markersize=size_, ax=ax)
```
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add LineCollection plot 1410608825 | |
1575756825 | https://github.com/pydata/xarray/pull/7891#issuecomment-1575756825 | https://api.github.com/repos/pydata/xarray/issues/7891 | IC_kwDOAMm_X85d7CQZ | Illviljan 14371165 | 2023-06-04T22:29:18Z | 2023-06-04T22:29:18Z | MEMBER | You could use |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add errors option to curvefit 1740268634 | |
1570164833 | https://github.com/pydata/xarray/pull/7821#issuecomment-1570164833 | https://api.github.com/repos/pydata/xarray/issues/7821 | IC_kwDOAMm_X85dltBh | Illviljan 14371165 | 2023-05-31T12:43:30Z | 2023-05-31T12:43:30Z | MEMBER | Thanks @mgunyho ! |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 1, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Implement multidimensional initial guess and bounds for `curvefit` 1698626185 | |
1563788348 | https://github.com/pydata/xarray/pull/7875#issuecomment-1563788348 | https://api.github.com/repos/pydata/xarray/issues/7875 | IC_kwDOAMm_X85dNYQ8 | Illviljan 14371165 | 2023-05-26T04:17:07Z | 2023-05-26T04:18:08Z | MEMBER |
|
{ "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
defer to `numpy` for the expected result 1726529405 | |
1556198984 | https://github.com/pydata/xarray/issues/7856#issuecomment-1556198984 | https://api.github.com/repos/pydata/xarray/issues/7856 | IC_kwDOAMm_X85cwbZI | Illviljan 14371165 | 2023-05-21T14:51:55Z | 2023-05-21T14:51:55Z | MEMBER | Nope, I have not tried that. I suspect things will just self heal then considering the CI without understanding the root cause. Looking at the backends; we initialize a dict here: https://github.com/pydata/xarray/blob/d8ec3a3f6b02a8b941b484b3d254537af84b5fde/xarray/backends/common.py#L435 Stores each of our entrypoints like this: https://github.com/pydata/xarray/blob/d8ec3a3f6b02a8b941b484b3d254537af84b5fde/xarray/backends/h5netcdf_.py#L438 Then we append the local and other entrypoints together here: https://github.com/pydata/xarray/blob/d8ec3a3f6b02a8b941b484b3d254537af84b5fde/xarray/backends/plugins.py#L106-L116 But Why do the backends use the |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Unrecognized chunk manager dask - must be one of: [] 1718410975 | |
1556191288 | https://github.com/pydata/xarray/issues/7856#issuecomment-1556191288 | https://api.github.com/repos/pydata/xarray/issues/7856 | IC_kwDOAMm_X85cwZg4 | Illviljan 14371165 | 2023-05-21T14:17:30Z | 2023-05-21T14:17:30Z | MEMBER | The CI recreates its entire environment all the time and I don't? ```python from xarray.core.parallelcompat import list_chunkmanagers list_chunkmanagers() Out[1]: {} ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Unrecognized chunk manager dask - must be one of: [] 1718410975 | |
1556160022 | https://github.com/pydata/xarray/pull/7844#issuecomment-1556160022 | https://api.github.com/repos/pydata/xarray/issues/7844 | IC_kwDOAMm_X85cwR4W | Illviljan 14371165 | 2023-05-21T11:54:28Z | 2023-05-21T11:55:48Z | MEMBER |
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Improve to_dask_dataframe performance 1710752209 | |
1556114932 | https://github.com/pydata/xarray/issues/7856#issuecomment-1556114932 | https://api.github.com/repos/pydata/xarray/issues/7856 | IC_kwDOAMm_X85cwG30 | Illviljan 14371165 | 2023-05-21T08:13:47Z | 2023-05-21T08:13:47Z | MEMBER | Our backends are stored in a dict like this: |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Unrecognized chunk manager dask - must be one of: [] 1718410975 | |
1556113793 | https://github.com/pydata/xarray/issues/7856#issuecomment-1556113793 | https://api.github.com/repos/pydata/xarray/issues/7856 | IC_kwDOAMm_X85cwGmB | Illviljan 14371165 | 2023-05-21T08:09:09Z | 2023-05-21T08:09:09Z | MEMBER | cc @TomNicholas |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Unrecognized chunk manager dask - must be one of: [] 1718410975 | |
1547017905 | https://github.com/pydata/xarray/pull/7824#issuecomment-1547017905 | https://api.github.com/repos/pydata/xarray/issues/7824 | IC_kwDOAMm_X85cNZ6x | Illviljan 14371165 | 2023-05-14T22:44:06Z | 2023-05-15T08:40:51Z | MEMBER | Think I'll stop here. @alimanfoo, feel free to try this out if you have the time. Results: ``` before after ratio [964d350a] [86ef9540] - 117±2ms 65.6±0.9ms 0.56 groupby.Resample.time_agg_large_num_groups('sum', 2, False) - 117±2ms 65.3±0.7ms 0.56 groupby.ResampleCFTime.time_agg_large_num_groups('sum', 2, False) - 113±1ms 62.0±0.4ms 0.55 groupby.ResampleCFTime.time_agg_large_num_groups('sum', 1, False) - 112±2ms 61.4±0.5ms 0.55 groupby.Resample.time_agg_large_num_groups('sum', 1, False) - 8.50±0.2ms 1.61±0.01ms 0.19 combine.Combine1d.time_combine_by_coords - 1.81±0.02s 224±2ms 0.12 combine.Combine1dDask.time_combine_by_coords SOME BENCHMARKS HAVE CHANGED SIGNIFICANTLY. PERFORMANCE INCREASED. ``` |
{ "total_count": 4, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 2, "eyes": 0 } |
Improve concat performance 1699099029 | |
1543284025 | https://github.com/pydata/xarray/issues/7833#issuecomment-1543284025 | https://api.github.com/repos/pydata/xarray/issues/7833 | IC_kwDOAMm_X85b_KU5 | Illviljan 14371165 | 2023-05-11T03:36:34Z | 2023-05-11T03:36:34Z | MEMBER | I've noticed this as well, see #7824. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Slow performance of concat() 1704950804 | |
1537345671 | https://github.com/pydata/xarray/pull/7822#issuecomment-1537345671 | https://api.github.com/repos/pydata/xarray/issues/7822 | IC_kwDOAMm_X85bogiH | Illviljan 14371165 | 2023-05-07T07:34:45Z | 2023-05-07T07:34:45Z | MEMBER | Thanks, @mgunyho ! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix typos in contribution guide 1698632575 | |
1536656773 | https://github.com/pydata/xarray/pull/7820#issuecomment-1536656773 | https://api.github.com/repos/pydata/xarray/issues/7820 | IC_kwDOAMm_X85bl4WF | Illviljan 14371165 | 2023-05-05T19:03:08Z | 2023-05-05T19:03:08Z | MEMBER | Indeed is pint. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Pin pint to 0.20 1697987899 | |
1534920140 | https://github.com/pydata/xarray/issues/7707#issuecomment-1534920140 | https://api.github.com/repos/pydata/xarray/issues/7707 | IC_kwDOAMm_X85bfQXM | Illviljan 14371165 | 2023-05-04T14:50:01Z | 2023-05-04T14:50:01Z | MEMBER | Lots of pint errors with version 0.21, @keewis. I think pint 0.20.1 worked well? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
⚠️ Nightly upstream-dev CI failed ⚠️ 1650481625 | |
1530345382 | https://github.com/pydata/xarray/pull/7795#issuecomment-1530345382 | https://api.github.com/repos/pydata/xarray/issues/7795 | IC_kwDOAMm_X85bNzem | Illviljan 14371165 | 2023-05-01T21:41:56Z | 2023-05-01T21:41:56Z | MEMBER | Feels like it worked quite recently, has something changed? Benchmarks still works on the flox side. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
[skip-ci] Add cftime groupby, resample benchmarks 1688781350 | |
1530096971 | https://github.com/pydata/xarray/pull/7787#issuecomment-1530096971 | https://api.github.com/repos/pydata/xarray/issues/7787 | IC_kwDOAMm_X85bM21L | Illviljan 14371165 | 2023-05-01T19:13:57Z | 2023-05-01T19:13:57Z | MEMBER | Thanks, @ksunden and @tacaswell for the guidance we'll tackle these in separate PRs, see #7802. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Allow the label run-upstream to run upstream CI 1684281101 | |
1529823367 | https://github.com/pydata/xarray/pull/7801#issuecomment-1529823367 | https://api.github.com/repos/pydata/xarray/issues/7801 | IC_kwDOAMm_X85bL0CH | Illviljan 14371165 | 2023-05-01T15:15:30Z | 2023-05-01T15:15:30Z | MEMBER | Thanks, @dstansby ! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Update asv links in contributing guide 1690872248 | |
1528693660 | https://github.com/pydata/xarray/pull/5704#issuecomment-1528693660 | https://api.github.com/repos/pydata/xarray/issues/5704 | IC_kwDOAMm_X85bHgOc | Illviljan 14371165 | 2023-04-29T06:56:37Z | 2023-04-29T06:58:26Z | MEMBER | Those issues indeed has to be fixed if opening files lazily is the only option for xarray. But xarray could also accept that |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Allow in-memory arrays with open_mfdataset 970245117 | |
1528527292 | https://github.com/pydata/xarray/issues/7794#issuecomment-1528527292 | https://api.github.com/repos/pydata/xarray/issues/7794 | IC_kwDOAMm_X85bG3m8 | Illviljan 14371165 | 2023-04-29T02:39:19Z | 2023-04-29T02:39:19Z | MEMBER | Why/where do you get a cftime._cftime.Datetime360Day ? It is deprecated according to cftime. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
TypeError for time_bnds variable when calling Dataset.to_netcdf 1688779793 | |
1526232602 | https://github.com/pydata/xarray/issues/7792#issuecomment-1526232602 | https://api.github.com/repos/pydata/xarray/issues/7792 | IC_kwDOAMm_X85a-HYa | Illviljan 14371165 | 2023-04-27T19:21:54Z | 2023-04-27T19:22:26Z | MEMBER | It's because opening several files requires concatenating the files. xarray does not have any machinery to do that lazily without dask, so all your files will be loaded to memory. Maybe that's ok for you? If the files are small it should be fine. See #5704 for more discussion. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
If "chunks=None" is set in open_mfdataset, it is changed to "chunks={}" before being passed to "_dataset_from_backend_dataset" 1687297423 | |
1523703079 | https://github.com/pydata/xarray/pull/7787#issuecomment-1523703079 | https://api.github.com/repos/pydata/xarray/issues/7787 | IC_kwDOAMm_X85a0d0n | Illviljan 14371165 | 2023-04-26T16:22:57Z | 2023-04-26T16:22:57Z | MEMBER | Realized I actually wanted to run mypy with the upstream packages. So added such a CI as well, but only when adding this label so that it doesn't mess with the scheduled runs and those results. I notice quite a few mypy errors from the plot parts. If you have any ideas @headtr1ck and @ksunden you're very welcome to push more PRs!
```
xarray/core/options.py:12: error: Cannot assign to a type [misc]
xarray/core/options.py:12: error: Incompatible types in assignment (expression has type "Type[str]", variable has type "Type[Colormap]") [assignment]
xarray/plot/utils.py:808: error: Argument 1 to "set_xticks" of "_AxesBase" has incompatible type "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]"; expected "Iterable[float]" [arg-type]
xarray/plot/utils.py:810: error: Argument 1 to "set_yticks" of "_AxesBase" has incompatible type "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]"; expected "Iterable[float]" [arg-type]
xarray/plot/utils.py:813: error: Argument 1 to "set_xlim" of "_AxesBase" has incompatible type "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]"; expected "Union[float, Tuple[float, float], None]" [arg-type]
xarray/plot/utils.py:815: error: Argument 1 to "set_ylim" of "_AxesBase" has incompatible type "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]"; expected "Union[float, Tuple[float, float], None]" [arg-type]
Generated Cobertura report: /home/runner/work/xarray/xarray/mypy_report/cobertura.xml
Installing missing stub packages:
/home/runner/micromamba-root/envs/xarray-tests/bin/python -m pip install types-Pillow types-PyYAML types-Pygments types-babel types-colorama types-paramiko types-psutil types-pytz types-pywin32 types-setuptools types-urllib3
Generated Cobertura report: /home/runner/work/xarray/xarray/mypy_report/cobertura.xml
Found 154 errors in 10 files (checked 138 source files)
xarray/plot/utils.py:1349: error: Unsupported operand types for * ("_SupportsArray[dtype[Any]]" and "float") [operator]
xarray/plot/utils.py:1349: error: Unsupported operand types for * ("_NestedSequence[_SupportsArray[dtype[Any]]]" and "float") [operator]
xarray/plot/utils.py:1349: error: Unsupported operand types for * ("_NestedSequence[Union[bool, int, float, complex, str, bytes]]" and "float") [operator]
xarray/plot/utils.py:1349: note: Left operand is of type "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]"
xarray/plot/utils.py:1349: error: Unsupported operand types for * ("str" and "float") [operator]
xarray/plot/utils.py:1349: error: Unsupported operand types for * ("bytes" and "float") [operator]
xarray/plot/utils.py:1350: error: Item "_SupportsArray[dtype[Any]]" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/utils.py:1350: error: Item "_NestedSequence[_SupportsArray[dtype[Any]]]" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/utils.py:1350: error: Item "int" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/utils.py:1350: error: Item "float" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/utils.py:1350: error: Item "complex" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/utils.py:1350: error: Item "str" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/utils.py:1350: error: Item "bytes" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/utils.py:1350: error: Item "_NestedSequence[Union[bool, int, float, complex, str, bytes]]" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/utils.py:1351: error: Item "_SupportsArray[dtype[Any]]" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/utils.py:1351: error: Item "_NestedSequence[_SupportsArray[dtype[Any]]]" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/utils.py:1351: error: Item "int" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/utils.py:1351: error: Item "float" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/utils.py:1351: error: Item "complex" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/utils.py:1351: error: Item "str" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/utils.py:1351: error: Item "bytes" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/utils.py:1351: error: Item "_NestedSequence[Union[bool, int, float, complex, str, bytes]]" of "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" has no attribute "mask" [union-attr]
xarray/plot/facetgrid.py:684: error: "FigureCanvasBase" has no attribute "get_renderer" [attr-defined]
xarray/plot/accessor.py:182: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/accessor.py:182: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/accessor.py:309: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/accessor.py:309: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/accessor.py:428: error: Overloaded function implementation cannot produce return type of signature 2 [misc]
xarray/plot/accessor.py:428: error: Overloaded function implementation cannot produce return type of signature 3 [misc]
xarray/plot/accessor.py:433: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/accessor.py:433: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/accessor.py:552: error: Overloaded function implementation cannot produce return type of signature 2 [misc]
xarray/plot/accessor.py:552: error: Overloaded function implementation cannot produce return type of signature 3 [misc]
xarray/plot/accessor.py:557: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/accessor.py:557: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/accessor.py:676: error: Overloaded function implementation cannot produce return type of signature 2 [misc]
xarray/plot/accessor.py:676: error: Overloaded function implementation cannot produce return type of signature 3 [misc]
xarray/plot/accessor.py:681: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/accessor.py:681: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/accessor.py:800: error: Overloaded function implementation cannot produce return type of signature 2 [misc]
xarray/plot/accessor.py:800: error: Overloaded function implementation cannot produce return type of signature 3 [misc]
xarray/plot/accessor.py:948: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/accessor.py:948: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/accessor.py:1075: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/accessor.py:1075: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/accessor.py:1190: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/accessor.py:1190: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/dataset_plot.py:324: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/dataset_plot.py:324: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/dataset_plot.py:478: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/dataset_plot.py:478: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "x" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "y" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "u" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "v" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "density" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "linewidth" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "color" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "cmap" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "norm" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "arrowsize" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "arrowstyle" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "minlength" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "transform" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "zorder" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "start_points" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "maxlength" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "integration_direction" [misc]
xarray/plot/dataset_plot.py:649: error: Function gets multiple values for keyword argument "broken_streamlines" [misc]
xarray/plot/dataset_plot.py:649: error: Argument 1 has incompatible type "*List[ndarray[Any, Any]]"; expected "Union[float, Tuple[float, float]]" [arg-type]
xarray/plot/dataset_plot.py:649: error: Argument 1 has incompatible type "*List[ndarray[Any, Any]]"; expected "Union[str, Colormap, None]" [arg-type]
xarray/plot/dataset_plot.py:649: error: Argument 1 has incompatible type "*List[ndarray[Any, Any]]"; expected "Union[str, Normalize, None]" [arg-type]
xarray/plot/dataset_plot.py:649: error: Argument 1 has incompatible type "*List[ndarray[Any, Any]]"; expected "float" [arg-type]
xarray/plot/dataset_plot.py:649: error: Argument 1 has incompatible type "*List[ndarray[Any, Any]]"; expected "Union[str, ArrowStyle]" [arg-type]
xarray/plot/dataset_plot.py:649: error: Argument 1 has incompatible type "*List[ndarray[Any, Any]]"; expected "Optional[Transform]" [arg-type]
xarray/plot/dataset_plot.py:649: error: Argument 1 has incompatible type "*List[ndarray[Any, Any]]"; expected "Optional[float]" [arg-type]
xarray/plot/dataset_plot.py:649: error: Argument 1 has incompatible type "*List[ndarray[Any, Any]]"; expected "Literal['forward', 'backward', 'both']" [arg-type]
xarray/plot/dataset_plot.py:649: error: Argument 1 has incompatible type "*List[ndarray[Any, Any]]"; expected "bool" [arg-type]
xarray/plot/dataset_plot.py:751: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/dataset_plot.py:751: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/dataarray_plot.py:718: error: Incompatible return value type (got "Tuple[Union[ndarray[Any, Any], List[ndarray[Any, Any]]], ndarray[Any, Any], Union[BarContainer, Polygon, List[Union[BarContainer, Polygon]]]]", expected "Tuple[ndarray[Any, Any], ndarray[Any, Any], BarContainer]") [return-value]
xarray/plot/dataarray_plot.py:996: error: "Axes" has no attribute "view_init" [attr-defined]
xarray/plot/dataarray_plot.py:1106: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/dataarray_plot.py:1106: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/dataarray_plot.py:1261: error: Argument 1 to "scatter" of "Axes" has incompatible type "*List[ndarray[Any, Any]]"; expected "Union[Sequence[Union[Union[Tuple[float, float, float], str], Union[str, Tuple[float, float, float, float], Tuple[Union[Tuple[float, float, float], str], float], Tuple[Tuple[float, float, float, float], float]]]], Union[Union[Tuple[float, float, float], str], Union[str, Tuple[float, float, float, float], Tuple[Union[Tuple[float, float, float], str], float], Tuple[Tuple[float, float, float, float], float]]], None]" [arg-type]
xarray/plot/dataarray_plot.py:1261: error: Argument 1 to "scatter" of "Axes" has incompatible type "*List[ndarray[Any, Any]]"; expected "Optional[Union[str, Path, MarkerStyle]]" [arg-type]
xarray/plot/dataarray_plot.py:1261: error: Argument 1 to "scatter" of "Axes" has incompatible type "*List[ndarray[Any, Any]]"; expected "Union[str, Colormap, None]" [arg-type]
xarray/plot/dataarray_plot.py:1261: error: Argument 1 to "scatter" of "Axes" has incompatible type "*List[ndarray[Any, Any]]"; expected "Union[str, Normalize, None]" [arg-type]
xarray/plot/dataarray_plot.py:1261: error: Argument 1 to "scatter" of "Axes" has incompatible type "*List[ndarray[Any, Any]]"; expected "Optional[float]" [arg-type]
xarray/plot/dataarray_plot.py:1261: error: Argument 1 to "scatter" of "Axes" has incompatible type "*List[ndarray[Any, Any]]"; expected "Union[float, Sequence[float], None]" [arg-type]
xarray/plot/dataarray_plot.py:1615: error: "Axes" has no attribute "set_zlabel" [attr-defined]
xarray/plot/dataarray_plot.py:1655: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/dataarray_plot.py:1655: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/dataarray_plot.py:1874: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/dataarray_plot.py:1874: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/dataarray_plot.py:2010: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/dataarray_plot.py:2010: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/dataarray_plot.py:2146: error: Overloaded function signatures 1 and 2 overlap with incompatible return types [misc]
xarray/plot/dataarray_plot.py:2146: error: Overloaded function signatures 1 and 3 overlap with incompatible return types [misc]
xarray/plot/dataarray_plot.py:2464: error: "Axes" has no attribute "plot_surface" [attr-defined]
xarray/tests/test_plot.py:427: error: Value of type "Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]" is not indexable [index]
xarray/tests/test_plot.py:443: error: Module has no attribute "viridis" [attr-defined]
xarray/tests/test_plot.py:457: error: "None" not callable [misc]
xarray/tests/test_plot.py:462: error: "None" not callable [misc]
xarray/tests/test_plot.py:465: error: "None" not callable [misc]
xarray/tests/test_plot.py:471: error: Module has no attribute "viridis" [attr-defined]
xarray/tests/test_plot.py:477: error: Module has no attribute "viridis" [attr-defined]
xarray/tests/test_plot.py:482: error: Module has no attribute "viridis" [attr-defined]
xarray/tests/test_plot.py:486: error: Module has no attribute "viridis" [attr-defined]
xarray/tests/test_plot.py:493: error: "None" not callable [misc]
xarray/tests/test_plot.py:498: error: "None" not callable [misc]
xarray/tests/test_plot.py:501: error: "None" not callable [misc]
xarray/tests/test_plot.py:931: error: Module has no attribute "magma" [attr-defined]
xarray/tests/test_plot.py:933: error: Module has no attribute "magma" [attr-defined]
xarray/tests/test_plot.py:1173: error: Module has no attribute "RdBu" [attr-defined]
xarray/tests/test_plot.py:1746: error: Item "Colormap" of "Optional[Colormap]" has no attribute "colors" [union-attr]
xarray/tests/test_plot.py:1746: error: Item "None" of "Optional[Colormap]" has no attribute "colors" [union-attr]
xarray/tests/test_plot.py:1747: error: Item "Colormap" of "Optional[Colormap]" has no attribute "colors" [union-attr]
xarray/tests/test_plot.py:1747: error: Item "None" of "Optional[Colormap]" has no attribute "colors" [union-attr]
xarray/tests/test_plot.py:1749: error: Item "Colormap" of "Optional[Colormap]" has no attribute "_rgba_over" [union-attr]
xarray/tests/test_plot.py:1749: error: Item "None" of "Optional[Colormap]" has no attribute "_rgba_over" [union-attr]
xarray/tests/test_plot.py:1801: error: Item "None" of "Optional[ndarray[Any, Any]]" has no attribute "size" [union-attr]
xarray/tests/test_plot.py:1952: error: Item "None" of "Optional[ndarray[Any, Any]]" has no attribute "min" [union-attr]
xarray/tests/test_plot.py:1952: error: Item "None" of "Optional[ndarray[Any, Any]]" has no attribute "max" [union-attr]
xarray/tests/test_plot.py:1968: error: Item "None" of "Optional[ndarray[Any, Any]]" has no attribute "dtype" [union-attr]
xarray/tests/test_plot.py:1969: error: Value of type "Optional[ndarray[Any, Any]]" is not indexable [index]
xarray/tests/test_plot.py:2125: error: "Artist" has no attribute "get_clim" [attr-defined]
xarray/tests/test_plot.py:2135: error: "Colorbar" has no attribute "vmin" [attr-defined]
xarray/tests/test_plot.py:2136: error: "Colorbar" has no attribute "vmax" [attr-defined]
xarray/tests/test_plot.py:2202: error: "Artist" has no attribute "get_clim" [attr-defined]
xarray/tests/test_plot.py:2218: error: "Artist" has no attribute "norm" [attr-defined]
xarray/tests/test_plot.py:2747: error: Item "_AxesBase" of "Optional[_AxesBase]" has no attribute "legend_" [union-attr]
xarray/tests/test_plot.py:2747: error: Item "None" of "Optional[_AxesBase]" has no attribute "legend_" [union-attr]
xarray/tests/test_plot.py:2754: error: Item "None" of "Optional[_AxesBase]" has no attribute "get_legend" [union-attr]
xarray/tests/test_plot.py:2775: error: Item "None" of "Optional[FigureBase]" has no attribute "axes" [union-attr]
xarray/tests/test_plot.py:2775: error: Argument 1 to "len" has incompatible type "Union[_AxesBase, None, Any]"; expected "Sized" [arg-type]
xarray/tests/test_plot.py:2803: error: Module has no attribute "dates" [attr-defined]
xarray/tests/test_plot.py:2812: error: Module has no attribute "dates" [attr-defined]
xarray/tests/test_plot.py:2831: error: Item "None" of "Optional[_AxesBase]" has no attribute "xaxis" [union-attr]
xarray/tests/test_plot.py:2831: error: Module has no attribute "dates" [attr-defined]
xarray/tests/test_groupby.py:715: error: Argument 1 to "groupby" of "Dataset" has incompatible type "ndarray[Any, dtype[signedinteger[Any]]]"; expected "Union[Hashable, DataArray, IndexVariable]" [arg-type]
xarray/tests/test_groupby.py:715: note: Following member(s) of "ndarray[Any, dtype[signedinteger[Any]]]" have conflicts:
xarray/tests/test_groupby.py:715: note: __hash__: expected "Callable[[], int]", got "None"
xarray/tests/test_dataset.py:6964: error: "PlainQuantity[Any]" not callable [operator]
xarray/tests/test_dataset.py:6965: error: "PlainQuantity[Any]" not callable [operator]
xarray/tests/test_dataset.py:7007: error: "PlainQuantity[Any]" not callable [operator]
xarray/tests/test_dataset.py:7008: error: "PlainQuantity[Any]" not callable [operator]
xarray/tests/test_dataarray.py:6687: error: "PlainQuantity[Any]" not callable [operator]
xarray/tests/test_dataarray.py:6689: error: "PlainQuantity[Any]" not callable [operator]
xarray/tests/test_dataarray.py:6735: error: "PlainQuantity[Any]" not callable [operator]
xarray/tests/test_dataarray.py:6737: error: "PlainQuantity[Any]" not callable [operator]
```
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Allow the label run-upstream to run upstream CI 1684281101 | |
1509228401 | https://github.com/pydata/xarray/pull/7752#issuecomment-1509228401 | https://api.github.com/repos/pydata/xarray/issues/7752 | IC_kwDOAMm_X85Z9P9x | Illviljan 14371165 | 2023-04-14T20:38:08Z | 2023-04-14T20:38:59Z | MEMBER | The mypy 3.9 CI keeps installing the old version which hinders installing a new version with
```
INSTALLED VERSIONS
------------------
commit: c6eeaa6faa0f3d084f98bb5c9bad777533f07a40
python: 3.9.16 | packaged by conda-forge | (main, Feb 1 2023, 21:39:03)
[GCC 11.3.0]
python-bits: 64
OS: Linux
OS-release: 5.15.0-1035-azure
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: C.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.9.1
xarray: 2023.3.1.dev56+gc6eeaa6f
pandas: 2.0.0
numpy: 1.23.5
scipy: 1.10.1
netCDF4: 1.6.3
pydap: installed
h5netcdf: 1.1.0
h5py: 3.8.0
Nio: None
zarr: 2.14.2
cftime: 1.6.2
nc_time_axis: 1.4.1
PseudoNetCDF: 3.2.2
iris: 3.4.1
bottleneck: 1.3.7
dask: 2023.3.2
distributed: 2023.3.2.1
matplotlib: 3.7.1
cartopy: 0.21.1
seaborn: 0.12.2
numbagg: 0.2.2
fsspec: 2023.4.0
cupy: None
pint: 0.20.1
sparse: 0.14.0
flox: 0.6.10
numpy_groupies: 0.9.20
setuptools: 67.6.1
pip: 23.0.1
conda: 23.3.1
pytest: 7.3.0
mypy: 0.982
IPython: None
sphinx: None
```
Using |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix typing errors using mypy 1.2 1665260014 | |
1505965953 | https://github.com/pydata/xarray/pull/7752#issuecomment-1505965953 | https://api.github.com/repos/pydata/xarray/issues/7752 | IC_kwDOAMm_X85ZwzeB | Illviljan 14371165 | 2023-04-12T21:21:40Z | 2023-04-12T21:21:40Z | MEMBER | Before: ``` xarray/core/utils.py:116: error: Unused "type: ignore" comment xarray/core/combine.py:374: error: Unused "type: ignore" comment xarray/core/rolling.py:379: error: Unused "type: ignore" comment xarray/core/rolling.py:756: error: Unused "type: ignore" comment xarray/tests/test_plot.py:2045: error: Argument "col" has incompatible type "str"; expected "None" [arg-type] xarray/tests/test_plot.py:2054: error: Argument "col" has incompatible type "str"; expected "None" [arg-type] xarray/tests/test_variable.py:65: error: "staticmethod" expects 2 type arguments, but 1 given [type-arg] xarray/tests/test_concat.py:543: note: By default the bodies of untyped functions are not checked, consider using --check-untyped-defs [annotation-unchecked] Generated Cobertura report: /home/runner/work/xarray/xarray/mypy_report/cobertura.xml Installing missing stub packages: /home/runner/micromamba-root/envs/xarray-tests/bin/python -m pip install types-PyYAML types-Pygments types-babel types-colorama types-paramiko types-psutil types-pytz types-pywin32 types-setuptools types-urllib3 Generated Cobertura report: /home/runner/work/xarray/xarray/mypy_report/cobertura.xml Found 7 errors in 5 files (checked 138 source files) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix typing errors using mypy 1.2 1665260014 | |
1501602776 | https://github.com/pydata/xarray/pull/7720#issuecomment-1501602776 | https://api.github.com/repos/pydata/xarray/issues/7720 | IC_kwDOAMm_X85ZgKPY | Illviljan 14371165 | 2023-04-10T09:27:10Z | 2023-04-10T09:27:10Z | MEMBER | Thanks, @kmuehlbauer ! |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 1, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
preserve boolean dtype in encoding 1655000231 | |
1497352228 | https://github.com/pydata/xarray/pull/7561#issuecomment-1497352228 | https://api.github.com/repos/pydata/xarray/issues/7561 | IC_kwDOAMm_X85ZP8gk | Illviljan 14371165 | 2023-04-05T11:47:34Z | 2023-04-05T11:47:34Z | MEMBER | I'm not sure about the rest of the errors, @dcherian. Maybe IndexVariable needs to use the DataWithCoords mixin?
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Introduce Grouper objects internally 1600382587 | |
1489083542 | https://github.com/pydata/xarray/issues/7697#issuecomment-1489083542 | https://api.github.com/repos/pydata/xarray/issues/7697 | IC_kwDOAMm_X85YwZyW | Illviljan 14371165 | 2023-03-29T18:17:35Z | 2023-03-29T18:17:35Z | MEMBER | Looks like you almost got this figured out! You want to create a PR for this? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset very slow 1646267547 | |
1486221550 | https://github.com/pydata/xarray/pull/7690#issuecomment-1486221550 | https://api.github.com/repos/pydata/xarray/issues/7690 | IC_kwDOAMm_X85YlfDu | Illviljan 14371165 | 2023-03-28T05:04:50Z | 2023-03-28T05:04:50Z | MEMBER | How come the benchmarks is not failing? Shouldn't it be significantly slower now? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
[skip-ci] Add compute to groupby benchmarks 1643132089 | |
1481852421 | https://github.com/pydata/xarray/pull/7668#issuecomment-1481852421 | https://api.github.com/repos/pydata/xarray/issues/7668 | IC_kwDOAMm_X85YU0YF | Illviljan 14371165 | 2023-03-23T20:28:52Z | 2023-03-23T20:28:52Z | MEMBER | No need to use a release version now that #7667 is merged. Might be a good idea to use the next release version though. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Pull Request Labeler - Use a released version 1638243008 | |
1481849098 | https://github.com/pydata/xarray/pull/7667#issuecomment-1481849098 | https://api.github.com/repos/pydata/xarray/issues/7667 | IC_kwDOAMm_X85YUzkK | Illviljan 14371165 | 2023-03-23T20:25:47Z | 2023-03-23T20:25:47Z | MEMBER | Ok, it doesn't use the current PR, confirmed in #7668. But it works! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Pull Request Labeler - Undo workaround sync-labels bug 1638194068 | |
1481844145 | https://github.com/pydata/xarray/pull/7667#issuecomment-1481844145 | https://api.github.com/repos/pydata/xarray/issues/7667 | IC_kwDOAMm_X85YUyWx | Illviljan 14371165 | 2023-03-23T20:22:29Z | 2023-03-23T20:22:29Z | MEMBER | Maybe it's not using this PR? I'll try a merge. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Pull Request Labeler - Undo workaround sync-labels bug 1638194068 | |
1481829293 | https://github.com/pydata/xarray/pull/7651#issuecomment-1481829293 | https://api.github.com/repos/pydata/xarray/issues/7651 | IC_kwDOAMm_X85YUuut | Illviljan 14371165 | 2023-03-23T20:10:46Z | 2023-03-23T20:10:46Z | MEMBER | PR labeler error is unrelated, see #7667. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
[pre-commit.ci] pre-commit autoupdate 1632697004 | |
1481827782 | https://github.com/pydata/xarray/pull/7667#issuecomment-1481827782 | https://api.github.com/repos/pydata/xarray/issues/7667 | IC_kwDOAMm_X85YUuXG | Illviljan 14371165 | 2023-03-23T20:09:33Z | 2023-03-23T20:09:33Z | MEMBER | Am I missing something obvious again? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Pull Request Labeler - Undo workaround sync-labels bug 1638194068 | |
1481769212 | https://github.com/pydata/xarray/pull/7651#issuecomment-1481769212 | https://api.github.com/repos/pydata/xarray/issues/7651 | IC_kwDOAMm_X85YUgD8 | Illviljan 14371165 | 2023-03-23T19:22:46Z | 2023-03-23T19:22:46Z | MEMBER |
Isn't it odd that ruff doesn't automatically fix this? |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 1, "heart": 0, "rocket": 0, "eyes": 0 } |
[pre-commit.ci] pre-commit autoupdate 1632697004 | |
1475150683 | https://github.com/pydata/xarray/issues/7645#issuecomment-1475150683 | https://api.github.com/repos/pydata/xarray/issues/7645 | IC_kwDOAMm_X85X7QNb | Illviljan 14371165 | 2023-03-19T08:31:51Z | 2023-03-19T08:31:51Z | MEMBER | Probably from #7494.
mypy should have caught this a while ago when #7374 went in, does |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
encode_cf_variable triggers AttributeError: 'DataArray' object has no attribute '_data' 1630746106 | |
1475049548 | https://github.com/pydata/xarray/pull/7206#issuecomment-1475049548 | https://api.github.com/repos/pydata/xarray/issues/7206 | IC_kwDOAMm_X85X63hM | Illviljan 14371165 | 2023-03-19T00:39:00Z | 2023-03-19T00:39:00Z | MEMBER | Hmm, did I mess something up? I believe I only changed typing related things. _bins suffix seems to have disappeared: ``` def test_groupby_bins_multidim(self): array = self.make_groupby_multidim_example_array() bins = [0, 15, 20] bin_coords = pd.cut(array["lat"].values.flat, bins).categories expected = DataArray([16, 40], dims="lat_bins", coords={"lat_bins": bin_coords}) actual = array.groupby_bins("lat", bins).map(lambda x: x.sum())
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Save groupby codes after factorizing, pass to flox 1421065459 | |
1468702898 | https://github.com/pydata/xarray/pull/7603#issuecomment-1468702898 | https://api.github.com/repos/pydata/xarray/issues/7603 | IC_kwDOAMm_X85XiqCy | Illviljan 14371165 | 2023-03-14T19:27:51Z | 2023-03-14T19:27:51Z | MEMBER |
Comparing to https://github.com/pydata/xarray/blob/5043223ca7942c6eb582798aafa843d2efc0895b/asv_bench/benchmarks/init.py#L72-L74 It has to be initialized? Try adding a short description with why it's not implemented/link to issue. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
[skip-ci] Fix groupby binary ops benchmarks 1618336774 | |
1463319021 | https://github.com/pydata/xarray/pull/7603#issuecomment-1463319021 | https://api.github.com/repos/pydata/xarray/issues/7603 | IC_kwDOAMm_X85XOHnt | Illviljan 14371165 | 2023-03-10T06:03:20Z | 2023-03-10T06:03:20Z | MEMBER | Ahh, there are a few errors in the benchmarks. Are those fixed with your other PRs?
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
[skip-ci] Fix groupby binary ops benchmarks 1618336774 | |
1461318814 | https://github.com/pydata/xarray/pull/7600#issuecomment-1461318814 | https://api.github.com/repos/pydata/xarray/issues/7600 | IC_kwDOAMm_X85XGfSe | Illviljan 14371165 | 2023-03-09T05:38:40Z | 2023-03-09T05:38:40Z | MEMBER | I think we should stick to default black values. Otherwise I want to start arguing for line width=79 so we follow pep8. ;) You can still run this cleanup though so you still get your LOCs. :) |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Enable blacks `skip_magic_trailing_comma` options 1615980379 | |
1460756497 | https://github.com/pydata/xarray/pull/7595#issuecomment-1460756497 | https://api.github.com/repos/pydata/xarray/issues/7595 | IC_kwDOAMm_X85XEWAR | Illviljan 14371165 | 2023-03-08T19:45:49Z | 2023-03-08T19:45:49Z | MEMBER | I don't enjoy using git so I'll plug Github Desktop. I think it will reduce so much of the friction git causes to beginners: https://www.youtube.com/watch?v=l7uo1d3R0Wo https://www.youtube.com/watch?v=qUYkRWGWntE |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Clarifications in contributors guide 1615570467 | |
1452462512 | https://github.com/pydata/xarray/pull/7442#issuecomment-1452462512 | https://api.github.com/repos/pydata/xarray/issues/7442 | IC_kwDOAMm_X85WktGw | Illviljan 14371165 | 2023-03-02T19:52:23Z | 2023-03-02T19:52:23Z | MEMBER | Seems we're experiencing this issue now: https://github.com/pydata/pydata-sphinx-theme/issues/1220 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
update the docs environment 1534634670 | |
1445221673 | https://github.com/pydata/xarray/pull/7427#issuecomment-1445221673 | https://api.github.com/repos/pydata/xarray/issues/7427 | IC_kwDOAMm_X85WJFUp | Illviljan 14371165 | 2023-02-25T22:51:37Z | 2023-02-25T22:51:37Z | MEMBER | This one is failing on CI / ubuntu-latest py3.9 bare-minimum, is it taking a path without flox installed perhaps? ``` __ TestDataArrayGroupBy.testgroupby_fastpath_for_monotonic ___ [gw2] linux -- Python 3.9.16 /home/runner/micromamba-root/envs/xarray-tests/bin/python self = <xarray.tests.test_groupby.TestDataArrayGroupBy object at 0x7fbd9f461c10>
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Change .groupby fastpath to work for monotonic increasing and decreasing 1523260646 | |
1433686861 | https://github.com/pydata/xarray/issues/4610#issuecomment-1433686861 | https://api.github.com/repos/pydata/xarray/issues/4610 | IC_kwDOAMm_X85VdFNN | Illviljan 14371165 | 2023-02-16T20:39:54Z | 2023-02-16T20:39:54Z | MEMBER | Nice, I was looking at the real example too, |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add histogram method 750985364 | |
1433681353 | https://github.com/pydata/xarray/pull/6874#issuecomment-1433681353 | https://api.github.com/repos/pydata/xarray/issues/6874 | IC_kwDOAMm_X85VdD3J | Illviljan 14371165 | 2023-02-16T20:34:16Z | 2023-02-16T20:34:16Z | MEMBER | I don't have a better idea than to do |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Avoid calling np.asarray on lazy indexing classes 1327380960 | |
1433670641 | https://github.com/pydata/xarray/issues/4610#issuecomment-1433670641 | https://api.github.com/repos/pydata/xarray/issues/4610 | IC_kwDOAMm_X85VdBPx | Illviljan 14371165 | 2023-02-16T20:24:51Z | 2023-02-16T20:25:36Z | MEMBER |
Could you show the example that's this slow, @TomNicholas ? So I can play around with it too. One thing I noticed in your notebook is that you haven't used |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 } |
Add histogram method 750985364 | |
1426819173 | https://github.com/pydata/xarray/pull/7521#issuecomment-1426819173 | https://api.github.com/repos/pydata/xarray/issues/7521 | IC_kwDOAMm_X85VC4hl | Illviljan 14371165 | 2023-02-11T16:42:44Z | 2023-02-11T16:42:44Z | MEMBER |
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
use numpys SupportsDtype 1580266844 | |
1426817848 | https://github.com/pydata/xarray/pull/7521#issuecomment-1426817848 | https://api.github.com/repos/pydata/xarray/issues/7521 | IC_kwDOAMm_X85VC4M4 | Illviljan 14371165 | 2023-02-11T16:36:34Z | 2023-02-11T16:36:34Z | MEMBER | I don't get the error. Distributed has a py.typed file https://github.com/dask/distributed/blob/main/distributed/py.typed And if it was py.typed issue we should have seen it in other PRs and I haven't seen one yet that has this error.. @TomNicholas added py.typed to package data, https://github.com/xarray-contrib/datatree/commit/927749a7702761491461f9bdfa8a0c1fbc244d85 But still, if distributed also needs to do this we should see this error in more PRs. ``` ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 49.2/49.2 kB 3.6 MB/s eta 0:00:00 Collecting types-docutils Downloading types_docutils-0.19.1.3-py3-none-any.whl (16 kB) Installing collected packages: types-PyYAML, types-pytz, types-docutils, types-setuptools Successfully installed types-PyYAML-6.0.12.5 types-docutils-0.19.1.3 types-pytz-2022.7.1.0 types-setuptools-67.2.0.1 xarray/tests/test_distributed.py:14: error: Skipping analyzing "distributed": module is installed, but missing library stubs or py.typed marker [import] xarray/tests/test_distributed.py:21: error: Skipping analyzing "distributed.client": module is installed, but missing library stubs or py.typed marker [import] xarray/tests/test_distributed.py:21: note: See https://mypy.readthedocs.io/en/stable/running_mypy.html#missing-imports xarray/tests/test_distributed.py:22: error: Skipping analyzing "distributed.utils_test": module is installed, but missing library stubs or py.typed marker [import] Generated Cobertura report: /home/runner/work/xarray/xarray/mypy_report/cobertura.xml Installing missing stub packages: /home/runner/micromamba-root/envs/xarray-tests/bin/python -m pip install types-PyYAML types-pytz types-setuptools Generated Cobertura report: /home/runner/work/xarray/xarray/mypy_report/cobertura.xml Found 3 errors in 1 file (checked 140 source files) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
use numpys SupportsDtype 1580266844 | |
1414187606 | https://github.com/pydata/xarray/issues/5081#issuecomment-1414187606 | https://api.github.com/repos/pydata/xarray/issues/5081 | IC_kwDOAMm_X85USspW | Illviljan 14371165 | 2023-02-02T18:32:23Z | 2023-02-02T18:32:23Z | MEMBER | It is recommended to use it for lazy backends though: https://docs.xarray.dev/en/stable/internals/how-to-add-new-backend.html#how-to-support-lazy-loading |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Lazy indexing arrays as a stand-alone package 842436143 | |
1411536785 | https://github.com/pydata/xarray/pull/7418#issuecomment-1411536785 | https://api.github.com/repos/pydata/xarray/issues/7418 | IC_kwDOAMm_X85UIleR | Illviljan 14371165 | 2023-02-01T06:34:08Z | 2023-02-01T06:34:08Z | MEMBER | Hmm, I don't understand. Adding py.typed should be all that's needed, did that in flox and it worked great there: https://github.com/xarray-contrib/flox/pull/92 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Import datatree in xarray? 1519552711 | |
1411177667 | https://github.com/pydata/xarray/pull/7494#issuecomment-1411177667 | https://api.github.com/repos/pydata/xarray/issues/7494 | IC_kwDOAMm_X85UHNzD | Illviljan 14371165 | 2023-01-31T22:49:24Z | 2023-01-31T22:49:24Z | MEMBER | @agoodm, what you think of this version? Using xr.Variable directly seems a little easier to work with than trying to guess which type of array (cupy, dask, pint, backendarray, etc) is in the variable. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Update contains_cftime_datetimes to avoid loading entire variable array 1563270549 | |
1410959131 | https://github.com/pydata/xarray/pull/7496#issuecomment-1410959131 | https://api.github.com/repos/pydata/xarray/issues/7496 | IC_kwDOAMm_X85UGYcb | Illviljan 14371165 | 2023-01-31T19:38:59Z | 2023-01-31T19:38:59Z | MEMBER | It would be nice to have a good copy/paste example for open_dataset. For example I think |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
deprecate open_zarr 1564661430 | |
1409323892 | https://github.com/pydata/xarray/issues/7484#issuecomment-1409323892 | https://api.github.com/repos/pydata/xarray/issues/7484 | IC_kwDOAMm_X85UAJN0 | Illviljan 14371165 | 2023-01-30T20:59:36Z | 2023-01-30T21:00:40Z | MEMBER | You can do |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Opening datasets with large object dtype arrays is very slow 1561508426 | |
1409243024 | https://github.com/pydata/xarray/issues/7484#issuecomment-1409243024 | https://api.github.com/repos/pydata/xarray/issues/7484 | IC_kwDOAMm_X85T_1eQ | Illviljan 14371165 | 2023-01-30T19:53:03Z | 2023-01-30T19:53:03Z | MEMBER | Feel free to start working on that PR. 👍 It looks like |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Opening datasets with large object dtype arrays is very slow 1561508426 | |
1405634513 | https://github.com/pydata/xarray/pull/7277#issuecomment-1405634513 | https://api.github.com/repos/pydata/xarray/issues/7277 | IC_kwDOAMm_X85TyEfR | Illviljan 14371165 | 2023-01-26T20:51:43Z | 2023-01-26T20:51:43Z | MEMBER | pre-commit.ci autofix |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 1, "eyes": 0 } |
Require to explicitly defining optional dimensions such as hue and markersize 1444440024 | |
1402675394 | https://github.com/pydata/xarray/pull/7472#issuecomment-1402675394 | https://api.github.com/repos/pydata/xarray/issues/7472 | IC_kwDOAMm_X85TmyDC | Illviljan 14371165 | 2023-01-24T21:15:37Z | 2023-01-24T21:57:10Z | MEMBER | I like these kinds of improvements :) With ravel_chunks:
With reshape
|
{ "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 2, "rocket": 0, "eyes": 0 } |
Avoid in-memory broadcasting when converting to_dask_dataframe 1554036799 | |
1402567748 | https://github.com/pydata/xarray/pull/7474#issuecomment-1402567748 | https://api.github.com/repos/pydata/xarray/issues/7474 | IC_kwDOAMm_X85TmXxE | Illviljan 14371165 | 2023-01-24T20:13:12Z | 2023-01-24T21:00:38Z | MEMBER | Seems to work. :) I'll do a quick merge and continue in #7472.
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add benchmarks for to_dataframe and to_dask_dataframe 1555497796 | |
1402594544 | https://github.com/pydata/xarray/pull/7461#issuecomment-1402594544 | https://api.github.com/repos/pydata/xarray/issues/7461 | IC_kwDOAMm_X85TmeTw | Illviljan 14371165 | 2023-01-24T20:27:02Z | 2023-01-24T20:27:02Z | MEMBER | I'm not sure at all about this but maybe you're supposed to go back to something like this? https://github.com/pydata/xarray/pull/6834/commits/7fcc11ffb20583caf1976191997bd2a7525ac218#diff-791d93adb64d0986ac499ce1ba831cc95b4ffbde0dfe98b28d929935b05d7134L49
|
{ "total_count": 2, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 1, "heart": 0, "rocket": 0, "eyes": 0 } |
bump minimum versions, drop py38 1550109629 | |
1400218891 | https://github.com/pydata/xarray/pull/7353#issuecomment-1400218891 | https://api.github.com/repos/pydata/xarray/issues/7353 | IC_kwDOAMm_X85TdaUL | Illviljan 14371165 | 2023-01-23T11:51:56Z | 2023-01-23T11:51:56Z | MEMBER | Creating a separate environment file seems like a good idea. Feel free to push the changes you want, @keewis. I was thinking of coming back to this once 3.8 was dropped. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add python 3.11 to CI 1474717029 | |
1399202401 | https://github.com/pydata/xarray/pull/7277#issuecomment-1399202401 | https://api.github.com/repos/pydata/xarray/issues/7277 | IC_kwDOAMm_X85TZiJh | Illviljan 14371165 | 2023-01-21T07:54:29Z | 2023-01-21T07:54:29Z | MEMBER | This has stalled for long enough. I'll merge this at the end of next week unless someone disagrees, this pretty much reverts to original ds.plot.scatter behaviour because defining less than x and y in ds.plot.scatter was never allowed before anyway. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Require to explicitly defining optional dimensions such as hue and markersize 1444440024 | |
1399201567 | https://github.com/pydata/xarray/pull/7318#issuecomment-1399201567 | https://api.github.com/repos/pydata/xarray/issues/7318 | IC_kwDOAMm_X85TZh8f | Illviljan 14371165 | 2023-01-21T07:48:36Z | 2023-01-21T07:48:36Z | MEMBER | This has stalled for long enough. I'll merge this at the end of next week unless someone disagrees, at least it is an improvement to the bugged main. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Use plt.rc_context for default styles 1462470712 | |
1398790498 | https://github.com/pydata/xarray/pull/7353#issuecomment-1398790498 | https://api.github.com/repos/pydata/xarray/issues/7353 | IC_kwDOAMm_X85TX9li | Illviljan 14371165 | 2023-01-20T18:42:31Z | 2023-01-20T18:42:31Z | MEMBER | 87d689a shows that we have issues with 3.8 when either of numba/cdms2/numbagg are not available, then we take a different code path that fails somehow. Hopefully with python 3.9 it's fixed. Failing tests with only python 3.8 with windows, no numba/cdms2/numbagg:
```
FAILED xarray/tests/test_dataarray.py::TestNumpyCoercion::test_from_sparse - ValueError: Performing this operation would produce a dense result: <ufunc 'add'>
FAILED xarray/tests/test_dataset.py::TestDataset::test_unstack_sparse - TypeError: __init__() got an unexpected keyword argument 'fill_value'
FAILED xarray/tests/test_dataset.py::TestDataset::test_from_dataframe_sparse - TypeError: __init__() got an unexpected keyword argument 'fill_value'
FAILED xarray/tests/test_dataset.py::TestNumpyCoercion::test_from_sparse - ValueError: Performing this operation would produce a dense result: <ufunc 'add'>
FAILED xarray/tests/test_dataarray.py::TestDataArray::test_from_series_sparse - TypeError: __init__() got an unexpected keyword argument 'fill_value'
FAILED xarray/tests/test_dataarray.py::TestDataArray::test_from_multiindex_series_sparse - TypeError: from_numpy() takes 2 positional arguments but 3 were given
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.all(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.any(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.astype(*(), **{'dtype': <class 'int'>})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.clip(*(), **{'min': 0, 'max': 1})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.coarsen(*(), **{'windows': {'x': 2}, 'func': 'sum'})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.compute(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.conj(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.copy(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.count(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.get_axis_num(*(), **{'dim': 'x'})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.isel(*(), **{'x': slice(2, 4, None)})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.isnull(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.load(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.mean(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.notnull(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.roll(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.round(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.set_dims(*(), **{'dims': ('x', 'y', 'z')})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.stack(*(), **{'dimensions': {'flat': ('x', 'y')}})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.to_base_variable(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.transpose(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.unstack(*(), **{'dimensions': {'x': {'x1': 5, 'x2': 2}}})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.broadcast_equals(*(<xarray.Variable (x: 10, y: 5)>\narray([[0.43758721, 0. , 0. , 0.891773 , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0.96366276],\n [0. , 0. , 0. , 0. , 0.4236548 ],\n [0. , 0. , 0.64589411, 0. , 0. ]]),), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.equals(*(<xarray.Variable (x: 10, y: 5)>\narray([[0.43758721, 0. , 0. , 0.891773 , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0.96366276],\n [0. , 0. , 0. , 0. , 0.4236548 ],\n [0. , 0. , 0.64589411, 0. , 0. ]]),), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.identical(*(<xarray.Variable (x: 10, y: 5)>\narray([[0.43758721, 0. , 0. , 0.891773 , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0.96366276],\n [0. , 0. , 0. , 0. , 0.4236548 ],\n [0. , 0. , 0.64589411, 0. , 0. ]]),), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.fillna(*(0,), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.max(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.min(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.prod(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.sum(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_variable_method[obj.where(*(), **{'cond': <xarray.Variable (x: 10, y: 5)>\narray([[False, False, False, True, False],\n [False, False, False, False, False],\n [False, False, False, False, False],\n [False, False, False, False, False],\n [False, False, False, False, False],\n [False, False, False, False, False],\n [False, False, False, False, False],\n [False, False, False, False, True],\n [False, False, False, False, False],\n [False, False, True, False, False]])})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_1d_variable_method[func0-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::TestSparseVariable::test_nbytes - assert 192 == 120
+ where 192 = <xarray.Variable (x: 4, y: 6)>\narray([[0. , 0.87001215, 0. , 0. , 0. ,\n 0. ]...6147936,\n 0.63992102],\n [0. , 0. , 0.77815675, 0. , 0.0202184 ,\n 0.79915856]]).nbytes
+ where <xarray.Variable (x: 4, y: 6)>\narray([[0. , 0.87001215, 0. , 0. , 0. ,\n 0. ]...6147936,\n 0.63992102],\n [0. , 0. , 0.77815675, 0. , 0.0202184 ,\n 0.79915856]]) = <xarray.tests.test_sparse.TestSparseVariable object at 0x000001CD9F898520>.var
+ and 120 = <COO: shape=(4, 6), dtype=float64, nnz=12, sorted=True, duplicates=False>.nbytes
+ where <COO: shape=(4, 6), dtype=float64, nnz=12, sorted=True, duplicates=False> = <xarray.tests.test_sparse.TestSparseVariable object at 0x000001CD9F898520>.data
FAILED xarray/tests/test_sparse.py::TestSparseVariable::test_unary_op - AssertionError: assert False
+ where False = isinstance(array([[-0. , -0.87001215, -0. , -0. , -0. ,\n -0. ],\n [-0.11827443, -0...,\n -0.63992102],\n [-0. , -0. , -0.77815675, -0. , -0.0202184 ,\n -0.79915856]]), (<class 'sparse.sparse_array.SparseArray'>,))
FAILED xarray/tests/test_sparse.py::TestSparseVariable::test_univariate_ufunc - AssertionError: assert False
+ where False = isinstance(array([[0. , 0.76433677, 0. , 0. , 0. ,\n 0. ],\n [0.11799887, 0. ...4527321,\n 0.59713209],\n [0. , 0. , 0.70196783, 0. , 0.02021702,\n 0.7167696 ]]), (<class 'sparse.sparse_array.SparseArray'>,))
FAILED xarray/tests/test_sparse.py::TestSparseVariable::test_bivariate_ufunc - AssertionError: assert False
+ where False = isinstance(array([[0. , 0.87001215, 0. , 0. , 0. ,\n 0. ],\n [0.11827443, 0. ...6147936,\n 0.63992102],\n [0. , 0. , 0.77815675, 0. , 0.0202184 ,\n 0.79915856]]), (<class 'sparse.sparse_array.SparseArray'>,))
FAILED xarray/tests/test_sparse.py::TestSparseVariable::test_repr - AssertionError: assert '<xarray.Vari...ll_value=0.0>' == '<xarray.Vari...0.79915856]])'
<xarray.Variable (x: 4, y: 6)>
+ <COO: shape=(4, 6), dtype=float64, nnz=12, fill_value=0.0>
- array([[0. , 0.87001215, 0. , 0. , 0. ,
- 0. ],
- [0.11827443, 0. , 0.78052918, 0. , 0.0871293 ,
- 0.07103606],
- [0. , 0.97861834, 0.83261985, 0. , 0.46147936,
- 0.63992102],
- [0. , 0. , 0.77815675, 0. , 0.0202184 ,
- 0.79915856]])
FAILED xarray/tests/test_sparse.py::TestSparseVariable::test_pickle - AssertionError: assert False
+ where False = isinstance(array([[0. , 0.87001215, 0. , 0. , 0. ,\n 0. ],\n [0.11827443, 0. ...6147936,\n 0.63992102],\n [0. , 0. , 0.77815675, 0. , 0.0202184 ,\n 0.79915856]]), (<class 'sparse.sparse_array.SparseArray'>,))
FAILED xarray/tests/test_sparse.py::TestSparseVariable::test_missing_values - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.all(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.any(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.assign_attrs(*({'foo': 'bar'},), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.assign_coords(*(), **{'x': <xarray.DataArray 'x' (x: 10)>\narray([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])\nCoordinates:\n * x (x) int32 0 1 2 3 4 5 6 7 8 9})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.astype(*(<class 'int'>,), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.clip(*(), **{'min': 0, 'max': 1})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.compute(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.conj(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.copy(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.count(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.diff(*('x',), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.drop_vars(*('x',), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.expand_dims(*({'z': 2},), **{'axis': 2})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.get_axis_num(*('x',), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.get_index(*('x',), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.identical(*(<xarray.DataArray 'test' (x: 5, y: 5)>\narray([[0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0.71518937, 0. , 0. ],\n [0.60276338, 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ]])\nCoordinates:\n * x (x) int32 0 1 2 3 4\n * y (y) int32 0 1 2 3 4,), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.integrate(*('x',), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.isel(*({'x': slice(0, 3, None), 'y': slice(2, 4, None)},), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.isnull(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.load(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.mean(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.persist(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.reindex(*({'x': [1, 2, 3]},), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.rename(*('foo',), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.reorder_levels(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.reset_coords(*(), **{'drop': True})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.reset_index(*('x',), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.round(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.sel(*(), **{'x': [0, 1, 2]})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.shift(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.sortby(*('x',), **{'ascending': False})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.stack(*(), **{'z': ['x', 'y']})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.transpose(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.broadcast_equals(*(<xarray.Variable (x: 10, y: 5)>\narray([[0.43758721, 0. , 0. , 0.891773 , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0.96366276],\n [0. , 0. , 0. , 0. , 0.4236548 ],\n [0. , 0. , 0.64589411, 0. , 0. ]]),), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.equals(*(<xarray.Variable (x: 10, y: 5)>\narray([[0.43758721, 0. , 0. , 0.891773 , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0.96366276],\n [0. , 0. , 0. , 0. , 0.4236548 ],\n [0. , 0. , 0.64589411, 0. , 0. ]]),), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.combine_first(*(<xarray.DataArray 'test' (x: 10, y: 5)>\narray([[0.43758721, 0. , 0. , 0.891773 , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0. ],\n [0. , 0. , 0. , 0. , 0.96366276],\n [0. , 0. , 0. , 0. , 0.4236548 ],\n [0. , 0. , 0.64589411, 0. , 0. ]])\nCoordinates:\n * x (x) int32 0 1 2 3 4 5 6 7 8 9\n * y (y) int32 0 1 2 3 4,), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.fillna(*(0,), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.max(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.min(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.notnull(*(), **{})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.pipe(*(), **{'func': 'sum', 'axis': 1})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.prod(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.roll(*(), **{'x': 2, 'roll_coords': True})-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dataarray_method[obj.sum(*(), **{})-False] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_datarray_1d_method[func0-True] - AttributeError: 'numpy.ndarray' object has no attribute 'todense'
FAILED xarray/tests/test_sparse.py::test_dask_token - AssertionError: assert False
+ where False = isinstance(array([0, 0, 1, 2]), <class 'sparse.coo.COO'>)
+ where array([0, 0, 1, 2]) = <xarray.DataArray (dim_0: 4)>\narray([0, 0, 1, 2])\nDimensions without coordinates: dim_0.data
+ and <class 'sparse.coo.COO'> = sparse.COO
FAILED xarray/tests/test_sparse.py::test_apply_ufunc_check_meta_coherence - AssertionError: assert False
+ where False = isinstance(array([], dtype=int32), (<class 'sparse.sparse_array.SparseArray'>,))
FAILED xarray/tests/test_variable.py::TestVariableWithSparse::test_as_sparse - ValueError: coo is not a valid sparse format
ERROR xarray/tests/test_sparse.py::TestSparseDataArrayAndDataset::test_to_dataset_roundtrip - ValueError: could not broadcast input array from shape (4,6) into shape (4,1)
ERROR xarray/tests/test_sparse.py::TestSparseDataArrayAndDataset::test_align - ValueError: could not broadcast input array from shape (4,6) into shape (4,1)
ERROR xarray/tests/test_sparse.py::TestSparseDataArrayAndDataset::test_align_outer - ValueError: could not broadcast input array from shape (4,6) into shape (4,1)
ERROR xarray/tests/test_sparse.py::TestSparseDataArrayAndDataset::test_concat - ValueError: could not broadcast input array from shape (4,6) into shape (4,1)
ERROR xarray/tests/test_sparse.py::TestSparseDataArrayAndDataset::test_stack - ValueError: could not broadcast input array from shape (4,6) into shape (4,1)
ERROR xarray/tests/test_sparse.py::TestSparseDataArrayAndDataset::test_dataarray_repr - ValueError: could not broadcast input array from shape (4,6) into shape (4,1)
ERROR xarray/tests/test_sparse.py::TestSparseDataArrayAndDataset::test_dataset_repr - ValueError: could not broadcast input array from shape (4,6) into shape (4,1)
ERROR xarray/tests/test_sparse.py::TestSparseDataArrayAndDataset::test_sparse_dask_dataset_repr - ValueError: could not broadcast input array from shape (4,6) into shape (4,1)
ERROR xarray/tests/test_sparse.py::TestSparseDataArrayAndDataset::test_dataarray_pickle - ValueError: could not broadcast input array from shape (4,6) into shape (4,1)
ERROR xarray/tests/test_sparse.py::TestSparseDataArrayAndDataset::test_dataset_pickle - ValueError: could not broadcast input array from shape (4,6) into shape (4,1)
ERROR xarray/tests/test_sparse.py::TestSparseDataArrayAndDataset::test_coarsen - ValueError: could not broadcast input array from shape (4,6) into shape (4,1)
= 93 failed, 14715 passed, 1640 skipped, 211 xfailed, 66 xpassed, 327 warnings, 11 errors in 699.08s (0:11:39) =
```
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add python 3.11 to CI 1474717029 | |
1398730901 | https://github.com/pydata/xarray/pull/7353#issuecomment-1398730901 | https://api.github.com/repos/pydata/xarray/issues/7353 | IC_kwDOAMm_X85TXvCV | Illviljan 14371165 | 2023-01-20T17:41:22Z | 2023-01-20T17:41:22Z | MEMBER | Deprecation warning in pydap failing the docstring tests:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add python 3.11 to CI 1474717029 | |
1398702023 | https://github.com/pydata/xarray/pull/7461#issuecomment-1398702023 | https://api.github.com/repos/pydata/xarray/issues/7461 | IC_kwDOAMm_X85TXn_H | Illviljan 14371165 | 2023-01-20T17:21:34Z | 2023-01-20T17:21:34Z | MEMBER | @jhamman, I believe you should simply remove Commit testing the hack: https://github.com/pydata/xarray/pull/7285/commits/d8bef27e54aa9e81873d5d64fca6a1d4d324ca62 |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
bump minimum versions, drop py38 1550109629 | |
1397515014 | https://github.com/pydata/xarray/issues/7457#issuecomment-1397515014 | https://api.github.com/repos/pydata/xarray/issues/7457 | IC_kwDOAMm_X85TTGMG | Illviljan 14371165 | 2023-01-19T19:49:19Z | 2023-01-19T19:49:19Z | MEMBER |
Yes, now I recall, it was here #6894. I think it could be interesting to try out: https://github.com/pmeier/array-protocol Another good read: https://github.com/data-apis/array-api/issues/229 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Typing of internal datatypes 1548948097 | |
1397074522 | https://github.com/pydata/xarray/issues/7457#issuecomment-1397074522 | https://api.github.com/repos/pydata/xarray/issues/7457 | IC_kwDOAMm_X85TRapa | Illviljan 14371165 | 2023-01-19T14:35:37Z | 2023-01-19T14:35:37Z | MEMBER | I've been thinking that a good and safe start on this issue is to replace all these raw |
{ "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Typing of internal datatypes 1548948097 | |
1373979208 | https://github.com/pydata/xarray/pull/7424#issuecomment-1373979208 | https://api.github.com/repos/pydata/xarray/issues/7424 | IC_kwDOAMm_X85R5UJI | Illviljan 14371165 | 2023-01-06T18:18:56Z | 2023-01-15T16:09:05Z | MEMBER | The array api standard doesn't define any So any time an array has a Any thoughts? Are there any clever ways to handle the aggregations with NaNs in a generic way? edit: numpy implementations: https://github.com/numpy/numpy/blob/main/numpy/lib/nanfunctions.py |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
array api - Add tests for aggregations 1522810384 | |
1383112964 | https://github.com/pydata/xarray/issues/7439#issuecomment-1383112964 | https://api.github.com/repos/pydata/xarray/issues/7439 | IC_kwDOAMm_X85ScKEE | Illviljan 14371165 | 2023-01-15T10:24:55Z | 2023-01-15T10:31:29Z | MEMBER | I've found this part of the documentation a bit scary in the past because there is so much stuff to do for a simple "typo fix" so I welcome changes here! Nowadays, since the CI runs pytest, ASV performance benchmarks, pre-commit and builds the documentation on every PR it isn't really necessary for new contributors to get it to run locally. The only thing left is setting up a new branch with git, change the code and create a PR. If the CI fails check the details of that test, correct the code, push a new commit. Setting up git can also be scary for new users but then there is github desktop which hides away all of that in a quite user friendly GUI. Sure, if you're doing bigger changes running the specific tests locally is probably faster but at that point you're probably a more experienced contributor anyway. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add clarifying language to contributor's guide 1532853152 | |
1379571092 | https://github.com/pydata/xarray/pull/7374#issuecomment-1379571092 | https://api.github.com/repos/pydata/xarray/issues/7374 | IC_kwDOAMm_X85SOpWU | Illviljan 14371165 | 2023-01-11T22:33:55Z | 2023-01-11T22:33:55Z | MEMBER | Benchmark are improved if I understand the logs correctly. Unfortunately not significant enough to make ASV report it though. The ratio has to be >1.5 and the improvements on .time_open_dataset are around 1.3-1.4. ``` PR:[ 50.85%] ··· dataset_io.IOReadCustomEngine.time_open_dataset ok
[ 50.85%] ··· ======== =========
chunks [ 54.69%] ··· dataset_io.IOReadSingleFile.time_read_dataset ok
[ 54.69%] ··· ========= ============= =============
-- chunks Baseline:[ 75.85%] ··· dataset_io.IOReadCustomEngine.time_open_dataset ok
[ 75.85%] ··· ======== ===========
chunks [ 79.69%] ··· dataset_io.IOReadSingleFile.time_read_dataset ok
[ 79.69%] ··· ========= ============ ============
-- chunks ``` PR:[ 50.85%] ··· dataset_io.IOReadCustomEngine.time_open_dataset ok
[ 50.85%] ··· ======== ==========
chunks [ 54.69%] ··· dataset_io.IOReadSingleFile.time_read_dataset ok
[ 54.69%] ··· ========= ============ =============
-- chunks Baseline:[ 75.85%] ··· dataset_io.IOReadCustomEngine.time_open_dataset ok
[ 75.85%] ··· ======== ==========
chunks [ 79.69%] ··· dataset_io.IOReadSingleFile.time_read_dataset ok
[ 79.69%] ··· ========= ============ ============
-- chunks ``` ``` PR:[ 50.85%] ··· dataset_io.IOReadCustomEngine.time_open_dataset ok
[ 50.85%] ··· ======== ============
chunks [ 54.69%] ··· dataset_io.IOReadSingleFile.time_read_dataset ok
[ 54.69%] ··· ========= ============ ============
-- chunks Baseline:[ 75.85%] ··· dataset_io.IOReadCustomEngine.time_open_dataset ok
[ 75.85%] ··· ======== ============
chunks [ 79.69%] ··· dataset_io.IOReadSingleFile.time_read_dataset ok
[ 79.69%] ··· ========= ============ ============
-- chunks |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Improve performance for backend datetime handling 1490160140 | |
1378015095 | https://github.com/pydata/xarray/pull/7431#issuecomment-1378015095 | https://api.github.com/repos/pydata/xarray/issues/7431 | IC_kwDOAMm_X85SItd3 | Illviljan 14371165 | 2023-01-10T23:10:32Z | 2023-01-10T23:10:32Z | MEMBER | Seems to work, tested a little here #7426. |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 1, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Pull Request Labeler - Workaround sync-labels bug 1528100871 | |
1378010601 | https://github.com/pydata/xarray/pull/7431#issuecomment-1378010601 | https://api.github.com/repos/pydata/xarray/issues/7431 | IC_kwDOAMm_X85SIsXp | Illviljan 14371165 | 2023-01-10T23:05:43Z | 2023-01-10T23:05:58Z | MEMBER | Seems bot uses labeler from main? I'll merge and see what want happens.. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Pull Request Labeler - Workaround sync-labels bug 1528100871 | |
1376318165 | https://github.com/pydata/xarray/pull/7426#issuecomment-1376318165 | https://api.github.com/repos/pydata/xarray/issues/7426 | IC_kwDOAMm_X85SCPLV | Illviljan 14371165 | 2023-01-09T21:09:05Z | 2023-01-09T22:31:51Z | MEMBER | Timings for the new ASV-tests: ``` [ 50.85%] ··· dataset_io.IOReadCustomEngine.time_open_dataset ok
[ 50.85%] ··· ======== ============
chunks |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add lazy backend ASV test 1523232313 | |
1376029728 | https://github.com/pydata/xarray/issues/7430#issuecomment-1376029728 | https://api.github.com/repos/pydata/xarray/issues/7430 | IC_kwDOAMm_X85SBIwg | Illviljan 14371165 | 2023-01-09T17:59:17Z | 2023-01-09T17:59:17Z | MEMBER | Try updating to latest xarray and dask. dask has had some nice updates lately, https://medium.com/pangeo/dask-distributed-and-pangeo-better-performance-for-everyone-thanks-to-science-software-63f85310a36b |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Missing Blocks when loading zarr file 1525802030 | |
1372796814 | https://github.com/pydata/xarray/pull/7382#issuecomment-1372796814 | https://api.github.com/repos/pydata/xarray/issues/7382 | IC_kwDOAMm_X85R0zeO | Illviljan 14371165 | 2023-01-05T21:26:13Z | 2023-01-05T21:26:13Z | MEMBER | Thanks, @benbovy ! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Some alignment optimizations 1498386428 | |
1372763950 | https://github.com/pydata/xarray/issues/7422#issuecomment-1372763950 | https://api.github.com/repos/pydata/xarray/issues/7422 | IC_kwDOAMm_X85R0rcu | Illviljan 14371165 | 2023-01-05T21:09:15Z | 2023-01-05T21:09:15Z | MEMBER | Hmm, this worked at some point. Must've gotten lost somewhere in one of the bigger plot refactors. Positional arguments have been deprecated though, so you should start getting used to using keyword arguments: https://docs.xarray.dev/en/stable/whats-new.html#v2022-11-0-nov-4-2022 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`plot.scatter` only works for declared arguments 1521002414 | |
1371430929 | https://github.com/pydata/xarray/pull/7418#issuecomment-1371430929 | https://api.github.com/repos/pydata/xarray/issues/7418 | IC_kwDOAMm_X85RvmAR | Illviljan 14371165 | 2023-01-04T21:18:05Z | 2023-01-04T21:18:05Z | MEMBER | Add a py.typed file in datatree to fix the mypy error: https://github.com/pydata/xarray/blob/main/xarray/py.typed |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 } |
Import datatree in xarray? 1519552711 | |
1370866073 | https://github.com/pydata/xarray/pull/7400#issuecomment-1370866073 | https://api.github.com/repos/pydata/xarray/issues/7400 | IC_kwDOAMm_X85RtcGZ | Illviljan 14371165 | 2023-01-04T12:25:45Z | 2023-01-04T12:25:45Z | MEMBER | Benchmark is a numba issue, probably #7306. Mypy is real, cannot getitem a object. Try out using isinstance instead of the try/except to narrow the typing. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fill missing data_vars during concat by reindexing 1508009922 | |
1353473644 | https://github.com/pydata/xarray/pull/7382#issuecomment-1353473644 | https://api.github.com/repos/pydata/xarray/issues/7382 | IC_kwDOAMm_X85QrF5s | Illviljan 14371165 | 2022-12-15T17:43:29Z | 2022-12-15T17:43:38Z | MEMBER | No benchmark is catching this? Maybe we can add a small one in https://github.com/pydata/xarray/blob/main/asv_bench/benchmarks/indexing.py ? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Some alignment optimizations 1498386428 | |
1342256217 | https://github.com/pydata/xarray/pull/7360#issuecomment-1342256217 | https://api.github.com/repos/pydata/xarray/issues/7360 | IC_kwDOAMm_X85QATRZ | Illviljan 14371165 | 2022-12-08T08:22:16Z | 2022-12-08T08:22:16Z | MEMBER | The mypy errors should be fixed soon I think: https://github.com/dask/distributed/issues/7378 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
[pre-commit.ci] pre-commit autoupdate 1477162465 | |
1339575144 | https://github.com/pydata/xarray/pull/7356#issuecomment-1339575144 | https://api.github.com/repos/pydata/xarray/issues/7356 | IC_kwDOAMm_X85P2Eto | Illviljan 14371165 | 2022-12-06T15:44:01Z | 2022-12-06T15:44:01Z | MEMBER | I'm not really opposed to this change, shape and dtype uses Without using This test just looked so similar to the tests in #6797. I think you can do a similar lazy test taking inspiration from: https://github.com/pydata/xarray/blob/ed60c6ccd3d6725cd91190b8796af4355f3085c2/xarray/tests/test_formatting.py#L715-L727 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Avoid loading entire dataset by getting the nbytes in an array 1475567394 | |
1339423992 | https://github.com/pydata/xarray/pull/7356#issuecomment-1339423992 | https://api.github.com/repos/pydata/xarray/issues/7356 | IC_kwDOAMm_X85P1fz4 | Illviljan 14371165 | 2022-12-06T13:53:03Z | 2022-12-06T13:53:03Z | MEMBER | Is that test targetting your issue with RAM crashing the laptop? Shouldn't there be some check if the values were loaded? How did you import your data? self.data looks like this: https://github.com/pydata/xarray/blob/ed60c6ccd3d6725cd91190b8796af4355f3085c2/xarray/core/variable.py#L420-L435 I was expecting your data to be a duck_array? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Avoid loading entire dataset by getting the nbytes in an array 1475567394 | |
1336402438 | https://github.com/pydata/xarray/pull/7353#issuecomment-1336402438 | https://api.github.com/repos/pydata/xarray/issues/7353 | IC_kwDOAMm_X85Pp-IG | Illviljan 14371165 | 2022-12-04T12:41:05Z | 2022-12-04T12:41:05Z | MEMBER | ``` error libmamba Could not solve for environment specs Encountered problems while solving: - nothing provides hdf5 1.8.15* needed by netcdf4-1.2.4-np110py27_1
``` It's a bit annoying the ci isn't showing which package has netcdf4 as a dependency. Is that possible? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add python 3.11 to CI 1474717029 | |
1328331087 | https://github.com/pydata/xarray/pull/7323#issuecomment-1328331087 | https://api.github.com/repos/pydata/xarray/issues/7323 | IC_kwDOAMm_X85PLLlP | Illviljan 14371165 | 2022-11-27T20:15:53Z | 2022-11-27T20:16:24Z | MEMBER | How about converting the dataset to dask dataframe?
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
(Issue #7324) added functions that return data values in memory efficient manner 1465047346 | |
1328070169 | https://github.com/pydata/xarray/pull/7204#issuecomment-1328070169 | https://api.github.com/repos/pydata/xarray/issues/7204 | IC_kwDOAMm_X85PKL4Z | Illviljan 14371165 | 2022-11-26T15:54:02Z | 2022-11-26T15:54:02Z | MEMBER | I am merging this on friday next week if no one minds. :) |
{ "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
absolufy-imports - No relative imports - PEP8 1420242462 | |
1328068423 | https://github.com/pydata/xarray/pull/7315#issuecomment-1328068423 | https://api.github.com/repos/pydata/xarray/issues/7315 | IC_kwDOAMm_X85PKLdH | Illviljan 14371165 | 2022-11-26T15:43:28Z | 2022-11-26T15:43:28Z | MEMBER | Thank you @headtr1ck ! :) |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix polyval overloads 1462057503 | |
1328068009 | https://github.com/pydata/xarray/pull/7301#issuecomment-1328068009 | https://api.github.com/repos/pydata/xarray/issues/7301 | IC_kwDOAMm_X85PKLWp | Illviljan 14371165 | 2022-11-26T15:41:07Z | 2022-11-26T15:41:07Z | MEMBER | Thanks, @jhamman ! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
deprecate pynio backend 1456026667 | |
1326789280 | https://github.com/pydata/xarray/pull/7319#issuecomment-1326789280 | https://api.github.com/repos/pydata/xarray/issues/7319 | IC_kwDOAMm_X85PFTKg | Illviljan 14371165 | 2022-11-24T19:20:31Z | 2022-11-24T19:20:31Z | MEMBER | Yeah it must be unrelated, I can't see how the doctest could be related to this. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
mypy - Remove some ignored packages and modules 1462833576 | |
1325718667 | https://github.com/pydata/xarray/pull/7318#issuecomment-1325718667 | https://api.github.com/repos/pydata/xarray/issues/7318 | IC_kwDOAMm_X85PBNyL | Illviljan 14371165 | 2022-11-23T22:14:38Z | 2022-11-23T22:17:21Z | MEMBER | Seaborn did something similar as the original but had a little check if the marker was filled or not: https://github.com/mwaskom/seaborn/blob/bf4695466d742f301f361b8d0c8168c5c4bdf889/seaborn/relational.py#L563 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Use plt.rc_context for default styles 1462470712 | |
1322674412 | https://github.com/pydata/xarray/pull/6963#issuecomment-1322674412 | https://api.github.com/repos/pydata/xarray/issues/6963 | IC_kwDOAMm_X85O1mjs | Illviljan 14371165 | 2022-11-21T21:31:48Z | 2022-11-21T21:31:48Z | MEMBER | Thanks, @lukeconibear ! |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 1, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fixed type errors in `mypy` GitHub Action 1353467346 | |
1321501372 | https://github.com/pydata/xarray/pull/6963#issuecomment-1321501372 | https://api.github.com/repos/pydata/xarray/issues/6963 | IC_kwDOAMm_X85OxIK8 | Illviljan 14371165 | 2022-11-21T05:59:36Z | 2022-11-21T05:59:36Z | MEMBER |
This one throws errors still: |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fixed type errors in `mypy` GitHub Action 1353467346 | |
1321231227 | https://github.com/pydata/xarray/pull/6963#issuecomment-1321231227 | https://api.github.com/repos/pydata/xarray/issues/6963 | IC_kwDOAMm_X85OwGN7 | Illviljan 14371165 | 2022-11-20T20:12:00Z | 2022-11-20T20:12:00Z | MEMBER | Dask is on the ignore list: https://github.com/pydata/xarray/blob/d6671dd414370d006254ba3156cb96256ce0e9c7/pyproject.toml#L31-L43 This seems to ignore the list and follow-imports doesn't seem to work either:
A good ol' copy/paste job works as expected though. :) I think we can discuss more elegant solutions in a follow up PR. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fixed type errors in `mypy` GitHub Action 1353467346 | |
1321212836 | https://github.com/pydata/xarray/pull/7296#issuecomment-1321212836 | https://api.github.com/repos/pydata/xarray/issues/7296 | IC_kwDOAMm_X85OwBuk | Illviljan 14371165 | 2022-11-20T18:52:12Z | 2022-11-20T18:52:12Z | MEMBER | Yeah, sounds reasonable. Maybe the reason for the ignore disappeared once DuckArrayModule was implemented? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix some typing errors in DuckArrayModule 1452339775 | |
1321200061 | https://github.com/pydata/xarray/pull/7285#issuecomment-1321200061 | https://api.github.com/repos/pydata/xarray/issues/7285 | IC_kwDOAMm_X85Ov-m9 | Illviljan 14371165 | 2022-11-20T17:49:56Z | 2022-11-20T17:49:56Z | MEMBER | Mypy errors with python 3.8. Doesn't appear related to this PR at least. ``` Run python -m mypy --install-types --non-interactive --cobertura-xml-report mypy_report python -m mypy --install-types --non-interactive --cobertura-xml-report mypy_report shell: /usr/bin/bash -l {0} env: CONDA_ENV_FILE: ci/requirements/environment.yml PYTHON_VERSION: 3.8 TODAY: 2022-11-20 MAMBA_ROOT_PREFIX: /home/runner/micromamba-root MAMBA_EXE: /home/runner/micromamba-bin/micromamba Collecting types-PyYAML Downloading types_PyYAML-6.0.12.2-py3-none-any.whl (14 kB) Collecting types-paramiko Downloading types_paramiko-2.12.0.1-py3-none-any.whl (32 kB) Collecting types-pytz Downloading types_pytz-2022.6.0.1-py3-none-any.whl (4.7 kB) Collecting types-setuptools Downloading types_setuptools-65.6.0.0-py3-none-any.whl (48 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 48.9/48.9 kB 19.4 MB/s eta 0:00:00 Collecting types-cryptography Downloading types_cryptography-3.3.23.2-py3-none-any.whl (30 kB) Installing collected packages: types-setuptools, types-PyYAML, types-pytz, types-cryptography, types-paramiko Successfully installed types-PyYAML-6.0.12.2 types-cryptography-3.3.23.2 types-paramiko-2.12.0.1 types-pytz-2022.6.0.1 types-setuptools-65.6.0.0 xarray/core/types.py:73: error: "tuple" is not subscriptable [misc] Generated Cobertura report: /home/runner/work/xarray/xarray/mypy_report/cobertura.xml Installing missing stub packages: /home/runner/micromamba-root/envs/xarray-tests/bin/python -m pip install types-PyYAML types-paramiko types-pytz types-setuptools xarray/core/types.py:75: error: "tuple" is not subscriptable [misc] xarray/core/types.py:77: error: "tuple" is not subscriptable [misc] xarray/core/types.py:79: error: "list" is not subscriptable [misc] xarray/core/merge.py:43: error: "tuple" is not subscriptable [misc] xarray/core/merge.py:44: error: "tuple" is not subscriptable [misc] xarray/core/merge.py:45: error: "tuple" is not subscriptable [misc] xarray/backends/api.py:65: error: "dict" is not subscriptable [misc] Generated Cobertura report: /home/runner/work/xarray/xarray/mypy_report/cobertura.xml Found 8 errors in 3 files (checked 140 source files) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Switch to T_DataArray in .coords 1447049720 | |
1321100829 | https://github.com/pydata/xarray/pull/7277#issuecomment-1321100829 | https://api.github.com/repos/pydata/xarray/issues/7277 | IC_kwDOAMm_X85OvmYd | Illviljan 14371165 | 2022-11-20T11:00:50Z | 2022-11-20T11:00:50Z | MEMBER | @dcherian, as you noted in that PR as well it's not just These are the coords that we currently guess in plot1d: https://github.com/pydata/xarray/blob/d6671dd414370d006254ba3156cb96256ce0e9c7/xarray/plot/dataarray_plot.py#L154 Should we remove them, (empty tuple) and let the user explicitly define all of them? If so should we remove any guessing in the other plot functions as well? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Require to explicitly defining optional dimensions such as hue and markersize 1444440024 | |
1321084794 | https://github.com/pydata/xarray/pull/7296#issuecomment-1321084794 | https://api.github.com/repos/pydata/xarray/issues/7296 | IC_kwDOAMm_X85Ovid6 | Illviljan 14371165 | 2022-11-20T09:52:02Z | 2022-11-20T09:52:02Z | MEMBER | I think the CI wasn't catching this because of: https://github.com/pydata/xarray/blob/63a69fe4b2fa7a4de8a1b65826f6af4869818166/pyproject.toml#L73-L77 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix some typing errors in DuckArrayModule 1452339775 | |
1312087585 | https://github.com/pydata/xarray/pull/7281#issuecomment-1312087585 | https://api.github.com/repos/pydata/xarray/issues/7281 | IC_kwDOAMm_X85ONN4h | Illviljan 14371165 | 2022-11-11T19:14:35Z | 2022-11-11T19:16:42Z | MEMBER | Markersize before PR:
Markersize after PR:
```python
import numpy as np
import matplotlib.pyplot as plt
import xarray as xr
temp = xr.DataArray(np.random.randn(10, 10, 2), coords=[np.arange(10), np.arange(10), [2021, 2022]], dims=["lon", "lat", "year"])
prec = xr.DataArray(np.random.randn(10, 10, 2), coords=[np.arange(10), np.arange(10), [2021, 2022]], dims=["lon", "lat", "year"])
one = xr.DataArray(np.random.randn(10, 10, 2), coords=[np.arange(10), np.arange(10), [2021, 2022]], dims=["lon", "lat", "year"])
blue = xr.DataArray(np.random.randn(10, 10, 2), coords=[np.arange(10), np.arange(10), [2021, 2022]], dims=["lon", "lat", "year"])
ds = xr.Dataset({"temperature": temp, "precipitation": prec, 1: one, "blue": blue})
# Stack the non interesting dims:
# fig, ax = plt.subplots()
# ds.stack(stacked_dim=[...]).plot.scatter(x="temperature", y="precipitation")
fig, ax = plt.subplots()
ds.plot.scatter(x="temperature", y="precipitation", markersize=1)
```
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Use a default value for constant dimensions 1445870847 | |
1311279880 | https://github.com/pydata/xarray/pull/7272#issuecomment-1311279880 | https://api.github.com/repos/pydata/xarray/issues/7272 | IC_kwDOAMm_X85OKIsI | Illviljan 14371165 | 2022-11-11T06:24:06Z | 2022-11-11T06:26:40Z | MEMBER |
With the current version of the PR we would get 18 for 1-sized arrays, but 36 if markersize was undefined. This seems a bit inconsistent to me. I think we should default to 36 instead for 1-sized arrays, but this would require a bit more tweaks than the scope of the current PR. I think we'll merge this to fix the zero division -> np.nan -> empty plots. And then I'll come up with a another PR where the size is the same. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Handle division by zero in _Normalize._calc_widths 1440711212 | |
1310792821 | https://github.com/pydata/xarray/pull/7277#issuecomment-1310792821 | https://api.github.com/repos/pydata/xarray/issues/7277 | IC_kwDOAMm_X85OIRx1 | Illviljan 14371165 | 2022-11-10T19:26:44Z | 2022-11-10T19:26:44Z | MEMBER | @jorisvandenbossche, feel free to try out this PR. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Require to explicitly defining optional dimensions such as hue and markersize 1444440024 | |
1299061501 | https://github.com/pydata/xarray/pull/7123#issuecomment-1299061501 | https://api.github.com/repos/pydata/xarray/issues/7123 | IC_kwDOAMm_X85Nbhr9 | Illviljan 14371165 | 2022-11-01T19:57:53Z | 2022-11-01T19:57:53Z | MEMBER | Thanks, @DanielGoman ! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
DOC: Added examples to docstrings of DataArray methods (#7123) 1396401446 | |
1297256807 | https://github.com/pydata/xarray/pull/7204#issuecomment-1297256807 | https://api.github.com/repos/pydata/xarray/issues/7204 | IC_kwDOAMm_X85NUpFn | Illviljan 14371165 | 2022-10-31T15:24:25Z | 2022-10-31T15:24:25Z | MEMBER | A lot of pep8 is quite gentle with the phrasing I think:
Another nice perk with absolute paths is that you can immediately run a |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
absolufy-imports - No relative imports - PEP8 1420242462 | |
1297227274 | https://github.com/pydata/xarray/pull/7236#issuecomment-1297227274 | https://api.github.com/repos/pydata/xarray/issues/7236 | IC_kwDOAMm_X85NUh4K | Illviljan 14371165 | 2022-10-31T15:04:13Z | 2022-10-31T15:04:13Z | MEMBER | Thanks @hmaarrfk ! |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 1, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Expand benchmarks for dataset insertion and creation 1428274982 | |
1293815240 | https://github.com/pydata/xarray/pull/7221#issuecomment-1293815240 | https://api.github.com/repos/pydata/xarray/issues/7221 | IC_kwDOAMm_X85NHg3I | Illviljan 14371165 | 2022-10-27T16:58:45Z | 2022-10-27T16:58:45Z | MEMBER | ``` before after ratio [c000690c] [24753f1f] - 3.17±0.02ms 1.94±0.01ms 0.61 merge.DatasetAddVariable.time_variable_insertion(100) - 81.5±2ms 17.0±0.2ms 0.21 merge.DatasetAddVariable.time_variable_insertion(1000) SOME BENCHMARKS HAVE CHANGED SIGNIFICANTLY. PERFORMANCE INCREASED. ``` Nice improvements. :) I haven't fully understood why we had that code though? |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Remove debugging slow assert statement 1423312198 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue >30