issues: 1704950804
This data as json
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1704950804 | I_kwDOAMm_X85ln3wU | 7833 | Slow performance of concat() | 703554 | closed | 0 | 3 | 2023-05-11T02:39:36Z | 2023-06-02T14:36:12Z | 2023-06-02T14:36:12Z | CONTRIBUTOR | What is your issue?In attempting to concatenate many datasets along a large dimension (total size ~100,000,000) I'm finding very slow performance, e.g., tens of seconds just to concatenate two datasets. With some profiling, I find all the time is being spend in this list comprehension: I don't know exactly what's going on here, but it doesn't look right - e.g., if the size of the dimension to be concatenated is large, this list comprehension can run millions of loops, which doesn't seem related to the intended behaviour. Sorry I don't have an MRE for this yet but please let me know if I can help further. |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/7833/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | 13221727 | issue |