home / github

Menu
  • Search all tables
  • GraphQL API

issues

Table actions
  • GraphQL API for issues

201 rows where state = "closed" and user = 10194086 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: comments, draft, created_at (date), updated_at (date), closed_at (date)

type 2

  • pull 130
  • issue 71

state 1

  • closed · 201 ✖

repo 1

  • xarray 201
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
2137065741 PR_kwDOAMm_X85nAXC5 8756 suppress base & loffset deprecation warnings mathause 10194086 closed 0     2 2024-02-15T17:23:27Z 2024-02-16T09:44:32Z 2024-02-15T19:11:10Z MEMBER   0 pydata/xarray/pulls/8756

Supress some more internal warnings in the test suite.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8756/reactions",
    "total_count": 3,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 3,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
2090265314 PR_kwDOAMm_X85kiCi8 8627 unify freq strings (independent of pd version) mathause 10194086 closed 0     4 2024-01-19T10:57:04Z 2024-02-15T17:53:42Z 2024-02-15T16:53:36Z MEMBER   0 pydata/xarray/pulls/8627
  • [ ] Adresses points 2 and 3 and closes #8612
  • [ ] Tests added
  • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [ ] New functions/methods are listed in api.rst

Probably not ready for review yet.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8627/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
2083501344 I_kwDOAMm_X858L7Ug 8612 more frequency string updates? mathause 10194086 closed 0     5 2024-01-16T09:56:48Z 2024-02-15T16:53:37Z 2024-02-15T16:53:37Z MEMBER      

What is your issue?

I looked a bit into the frequency string update & found 3 issues we could improve upon.

  1. Apart from "M", pandas also deprecated "Y", and "Q", in favor of "YE" and "QE". (And they are discussing renaming "MS" to "MB"). Should we do the same?

  2. Should we translate the new freq strings to the old ones if pandas < 2.2 is installed? Otherwise we get the following situation: python import xarray as xr xr.date_range("1600-02-01", periods=3, freq="M") # deprecation warning xr.date_range("1600-02-01", periods=3, freq="ME") # ValueError: Invalid frequency: ME

  3. date_range_like can emit deprecation warnings without a way to mitigate them if pandas < 2.2 is installed. (When a DatetimeIndex) is passed. Could be nice to translate the old freq string to the new one without a warning.

I have played around with 2. and 3. and can open a PR if you are on board.

@spencerkclark @aulemahal

  • pandas-dev/pandas#55792
  • pandas-dev/pandas#55553
  • pandas-dev/pandas#56840
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8612/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
2130313810 PR_kwDOAMm_X85mpS8i 8737 unstack: require unique MultiIndex mathause 10194086 closed 0     2 2024-02-12T14:58:06Z 2024-02-13T09:48:51Z 2024-02-13T09:48:36Z MEMBER   0 pydata/xarray/pulls/8737
  • [x] Closes #7104
  • [x] Tests added
  • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [ ] New functions/methods are listed in api.rst

Unstacking non-unique MultiIndex can lead to silent data loss, so we raise an error.

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8737/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1918089795 I_kwDOAMm_X85yU7pD 8252 cannot use negative step to sel from zarr (without dask) mathause 10194086 closed 0     0 2023-09-28T18:52:07Z 2024-02-10T02:57:33Z 2024-02-10T02:57:33Z MEMBER      

What happened?

As per: https://github.com/pydata/xarray/pull/8246#discussion_r1340357405

Passing a negative step in a slice to select a non-chunked zarr-backed datasets raises an error.

What did you expect to happen?

zarr should allow negative step (probably?)

Minimal Complete Verifiable Example

```Python import xarray as xr

create a zarr dataset

air = xr.tutorial.open_dataset("air_temperature") air.to_zarr("test.zarr")

ds = xr.open_dataset("test.zarr", engine="zarr") ds.air[::-1, ].load()

note that this works if the dataset is backed by dask

ds_dask = xr.open_dataset("test.zarr", engine="zarr", chunks="auto") ds_dask.air[::-1, ].load() ```

MVCE confirmation

  • [ ] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
  • [ ] Complete example — the example is self-contained, including all data and the text of any traceback.
  • [ ] Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
  • [ ] New issue — a search of GitHub Issues suggests this is not a duplicate.

Relevant log output

```Python File ~/code/xarray/xarray/core/parallelcompat.py:93, in guess_chunkmanager(manager) 91 if isinstance(manager, str): 92 if manager not in chunkmanagers: ---> 93 raise ValueError( 94 f"unrecognized chunk manager {manager} - must be one of: {list(chunkmanagers)}" 95 ) 97 return chunkmanagers[manager] 98 elif isinstance(manager, ChunkManagerEntrypoint): 99 # already a valid ChunkManager so just pass through

ValueError: unrecognized chunk manager dask - must be one of: [] ```

Anything else we need to know?

The error comes from https://github.com/zarr-developers/zarr-python/blob/6ec746ef1242dd9fec26b128cc0b3455d28ad6f0/zarr/indexing.py#L174 so it would need an upstream fix first.

cc @dcherian is this what you had in mind?

Environment

INSTALLED VERSIONS ------------------ commit: f6d69a1f6d952dcd67609c97f3fb3069abdda586 python: 3.10.12 | packaged by conda-forge | (main, Jun 23 2023, 22:40:32) [GCC 12.3.0] python-bits: 64 OS: Linux OS-release: 6.2.0-33-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.14.2 libnetcdf: 4.9.2 xarray: 2023.9.1.dev8+gf6d69a1f pandas: 2.1.1 numpy: 1.24.4 scipy: 1.11.3 netCDF4: 1.6.4 pydap: installed h5netcdf: 1.2.0 h5py: 3.9.0 Nio: None zarr: 2.16.1 cftime: 1.6.2 nc_time_axis: 1.4.1 PseudoNetCDF: 3.2.2 iris: 3.7.0 bottleneck: 1.3.7 dask: 2023.9.2 distributed: None matplotlib: 3.8.0 cartopy: 0.22.0 seaborn: 0.12.2 numbagg: 0.2.2 fsspec: 2023.9.2 cupy: None pint: 0.20.1 sparse: 0.14.0 flox: 0.7.2 numpy_groupies: 0.10.1 setuptools: 68.2.2 pip: 23.2.1 conda: None pytest: 7.4.2 mypy: None IPython: 8.15.0 sphinx: None
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8252/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
2126795367 PR_kwDOAMm_X85mdn7J 8727 ruff: move some config to lint section mathause 10194086 closed 0     0 2024-02-09T09:48:17Z 2024-02-09T15:49:03Z 2024-02-09T15:49:03Z MEMBER   0 pydata/xarray/pulls/8727

Fix a warning from ruff concerning the config:

warning: The top-level linter settings are deprecated in favour of their counterparts in the lint section. Please update the following options in pyproject.toml: - 'extend-safe-fixes' -> 'lint.extend-safe-fixes' - 'per-file-ignores' -> 'lint.per-file-ignores'

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8727/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
2098122391 PR_kwDOAMm_X85k8eI1 8651 allow negative freq strings mathause 10194086 closed 0     2 2024-01-24T12:04:39Z 2024-02-01T09:17:11Z 2024-02-01T09:01:44Z MEMBER   0 pydata/xarray/pulls/8651
  • [ ] Closes #xxxx
  • [x] Tests added
  • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst

This allows negative freq strings as discussed in https://github.com/pydata/xarray/pull/8627#issuecomment-1905981660 Deciding which tests to update was not easy.

The pandas _generate_range function was moved to https://github.com/pandas-dev/pandas/blob/3c96b8ff6d399fbec8d4d533e8e8618c592bb64b/pandas/core/arrays/datetimes.py#L2725 They no longer rollback the end. I had to remove this as well such that the following are eqivalent:

python xr.date_range("2001", "2000", freq="-1YE", calendar="noleap") pd.date_range("2001", "2000", freq="-1YE")

I am slightly nervous about this but all the tests still pass...

Once again cc @spencerkclark

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8651/reactions",
    "total_count": 2,
    "+1": 2,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
2105738254 PR_kwDOAMm_X85lVsgz 8680 use ruff.flake8-tidy-imports to enforce absolute imports mathause 10194086 closed 0     1 2024-01-29T15:19:34Z 2024-01-30T16:42:46Z 2024-01-30T16:38:48Z MEMBER   0 pydata/xarray/pulls/8680

use ruff.flake8-tidy-imports to enforce absolute imports

  • https://github.com/MarcoGorelli/absolufy-imports has been archived (no reason given)
  • removes a pre-commit hook which should make it faster locally
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8680/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
2098131640 PR_kwDOAMm_X85k8gJe 8652 new whats-new section mathause 10194086 closed 0     2 2024-01-24T12:10:07Z 2024-01-26T10:07:39Z 2024-01-24T12:59:49Z MEMBER   0 pydata/xarray/pulls/8652
  • [ ] Closes #xxxx
  • [ ] Tests added
  • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [ ] New functions/methods are listed in api.rst
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8652/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
2097971637 PR_kwDOAMm_X85k789- 8649 ruff: use extend-exclude mathause 10194086 closed 0     1 2024-01-24T10:39:46Z 2024-01-24T18:32:20Z 2024-01-24T15:59:11Z MEMBER   0 pydata/xarray/pulls/8649

I think we should use extend-exclude instead of exclude for ruff. We can then also remove ".eggs" as this is in the default.

From https://docs.astral.sh/ruff/settings/#exclude:

Note that you'll typically want to use extend-exclude to modify the excluded paths.

Default value: [".bzr", ".direnv", ".eggs", ".git", ".git-rewrite", ".hg", ".mypy_cache", ".nox", ".pants.d", ".pytype", ".ruff_cache", ".svn", ".tox", ".venv", "__pypackages__", "_build", "buck-out", "build", "dist", "node_modules", "venv"]

(I really dislike how github formats toml files... What would be the correct syntax, then?)

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8649/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
2094542307 PR_kwDOAMm_X85kwUlb 8642 infer_freq: return 'YE' (#8629 follow-up) mathause 10194086 closed 0     0 2024-01-22T18:53:52Z 2024-01-23T12:44:14Z 2024-01-23T12:44:14Z MEMBER   0 pydata/xarray/pulls/8642

I realized that the return value of infer_freq was not updated. #8627 will try to suppress all warnings in the test suite, so this is just the minimal PR.

Sorry for all the spam @spencerkclark

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8642/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
2090340727 PR_kwDOAMm_X85kiTjg 8629 rename "Y" freq string to "YE" (pandas parity) mathause 10194086 closed 0     10 2024-01-19T11:31:58Z 2024-01-22T18:38:06Z 2024-01-22T08:01:24Z MEMBER   0 pydata/xarray/pulls/8629
  • [x] Adresses point 1 of #8612
  • [x] Fixes one of the failures in #8623
  • [x] Tests added
  • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst

This renames the frequency string "Y" (formerly "A") to "YE" to achieve pandas parity. It could be better to wait for the conclusion of pandas-dev/pandas#56840 before doing this (but fixing the related failure in #8623 seemed a good reason as any to do it know).

Let me know what you think @spencerkclark @aulemahal

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8629/reactions",
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
2070895451 PR_kwDOAMm_X85jf-2J 8600 fix and test empty CFTimeIndex mathause 10194086 closed 0     1 2024-01-08T17:11:43Z 2024-01-17T12:29:11Z 2024-01-15T21:49:34Z MEMBER   0 pydata/xarray/pulls/8600
  • [x] Closes #7298
  • [x] Tests added
  • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
  • [ ] New functions/methods are listed in api.rst

Otherwise da.indexes and the html repr raise a ValueError. I first had "<undefined>" but I think None is better. cc @spencerkclark @keewis

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/8600/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
1455395909 I_kwDOAMm_X85Wv5RF 7298 html repr fails for empty cftime arrays mathause 10194086 closed 0     1 2022-11-18T16:09:00Z 2024-01-15T21:49:36Z 2024-01-15T21:49:35Z MEMBER      

What happened?

The html repr of a cftime array wants to display the "calendar", which it cannot if it is empty.

What did you expect to happen?

No error.

Minimal Complete Verifiable Example

```Python import numpy as np import xarray as xr

data_obs = np.random.randn(3) time_obs = xr.date_range("2000-01-01", periods=3, freq="YS", calendar="noleap")

obs = xr.DataArray(data_obs, coords={"time": time_obs})

o = obs[:0]

xr.core.formatting_html.array_repr(o) ```

MVCE confirmation

  • [ ] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
  • [ ] Complete example — the example is self-contained, including all data and the text of any traceback.
  • [ ] Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
  • [ ] New issue — a search of GitHub Issues suggests this is not a duplicate.

Relevant log output

```Python ValueError Traceback (most recent call last) Input In [1], in <cell line: 12>() 8 obs = xr.DataArray(data_obs, coords={"time": time_obs}) 10 o = obs[:0] ---> 12 xr.core.formatting_html.array_repr(o)

File ~/code/xarray/xarray/core/formatting_html.py:318, in array_repr(arr) 316 if hasattr(arr, "xindexes"): 317 indexes = _get_indexes_dict(arr.xindexes) --> 318 sections.append(index_section(indexes)) 320 sections.append(attr_section(arr.attrs)) 322 return _obj_repr(arr, header_components, sections)

File ~/code/xarray/xarray/core/formatting_html.py:195, in _mapping_section(mapping, name, details_func, max_items_collapse, expand_option_name, enabled) 188 expanded = _get_boolean_with_default( 189 expand_option_name, n_items < max_items_collapse 190 ) 191 collapsed = not expanded 193 return collapsible_section( 194 name, --> 195 details=details_func(mapping), 196 n_items=n_items, 197 enabled=enabled, 198 collapsed=collapsed, 199 )

File ~/code/xarray/xarray/core/formatting_html.py:155, in summarize_indexes(indexes) 154 def summarize_indexes(indexes): --> 155 indexes_li = "".join( 156 f"

  • {summarize_index(v, i)}
  • " 157 for v, i in indexes.items() 158 ) 159 return f"
      {indexes_li}
    "

    File ~/code/xarray/xarray/core/formatting_html.py:156, in <genexpr>(.0) 154 def summarize_indexes(indexes): 155 indexes_li = "".join( --> 156 f"

  • {summarize_index(v, i)}
  • " 157 for v, i in indexes.items() 158 ) 159 return f"
      {indexes_li}
    "

    File ~/code/xarray/xarray/core/formatting_html.py:140, in summarize_index(coord_names, index) 138 index_id = f"index-{uuid.uuid4()}" 139 preview = escape(inline_index_repr(index)) --> 140 details = short_index_repr_html(index) 142 data_icon = _icon("icon-database") 144 return ( 145 f"

    {name}
    " 146 f"
    {preview}
    " (...) 150 f"
    {details}
    " 151 )

    File ~/code/xarray/xarray/core/formatting_html.py:132, in short_index_repr_html(index) 129 if hasattr(index, "repr_html"): 130 return index.repr_html() --> 132 return f"

    {escape(repr(index))}
    "

    File ~/code/xarray/xarray/core/indexes.py:547, in PandasIndex.repr(self) 546 def repr(self): --> 547 return f"PandasIndex({repr(self.index)})"

    File ~/code/xarray/xarray/coding/cftimeindex.py:353, in CFTimeIndex.repr(self) 345 end_str = format_times( 346 self.values[-REPR_ELLIPSIS_SHOW_ITEMS_FRONT_END:], 347 display_width, 348 offset=offset, 349 first_row_offset=offset, 350 ) 351 datastr = "\n".join([front_str, f"{' '*offset}...", end_str]) --> 353 attrs_str = format_attrs(self) 354 # oneliner only if smaller than display_width 355 full_repr_str = f"{klass_name}([{datastr}], {attrs_str})"

    File ~/code/xarray/xarray/coding/cftimeindex.py:272, in format_attrs(index, separator) 267 def format_attrs(index, separator=", "): 268 """Format attributes of CFTimeIndex for repr.""" 269 attrs = { 270 "dtype": f"'{index.dtype}'", 271 "length": f"{len(index)}", --> 272 "calendar": f"'{index.calendar}'", 273 "freq": f"'{index.freq}'" if len(index) >= 3 else None, 274 } 276 attrs_str = [f"{k}={v}" for k, v in attrs.items()] 277 attrs_str = f"{separator}".join(attrs_str)

    File ~/code/xarray/xarray/coding/cftimeindex.py:698, in CFTimeIndex.calendar(self) 695 """The calendar used by the datetimes in the index.""" 696 from .times import infer_calendar_name --> 698 return infer_calendar_name(self)

    File ~/code/xarray/xarray/coding/times.py:374, in infer_calendar_name(dates) 371 return sample.calendar 373 # Error raise if dtype is neither datetime or "O", if cftime is not importable, and if element of 'O' dtype is not cftime. --> 374 raise ValueError("Array does not contain datetime objects.")

    ValueError: Array does not contain datetime objects. ```

    Anything else we need to know?

    Bisected to 7379923de756a2bcc59044d548f8ab7a68b91d4e use _repr_inline_ for indexes that define it.

    Environment

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/7298/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    2070231449 PR_kwDOAMm_X85jdtRr 8597 _infer_dtype: remove duplicated code mathause 10194086 closed 0     0 2024-01-08T11:12:18Z 2024-01-08T19:40:06Z 2024-01-08T19:40:06Z MEMBER   0 pydata/xarray/pulls/8597

    By chance I saw that in #4700 the same code block was added twice. I think this can be removed.

    cc @andersy005

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/8597/reactions",
        "total_count": 1,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 1,
        "eyes": 0
    }
        xarray 13221727 pull
    2070561434 PR_kwDOAMm_X85je1rK 8598 small string fixes mathause 10194086 closed 0     1 2024-01-08T14:20:56Z 2024-01-08T16:59:27Z 2024-01-08T16:53:00Z MEMBER   0 pydata/xarray/pulls/8598
    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/8598/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    2025652693 PR_kwDOAMm_X85hJh0D 8521 test and fix empty xindexes repr mathause 10194086 closed 0     4 2023-12-05T08:54:56Z 2024-01-08T10:58:09Z 2023-12-06T17:06:15Z MEMBER   0 pydata/xarray/pulls/8521
    • [x] Closes #8367
    • [x] Tests added
    • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
    • [ ] New functions/methods are listed in api.rst

    Uses max with a default, which work with empty iterators, in contrast to if col_items else 0.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/8521/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1959175248 I_kwDOAMm_X850xqRQ 8367 `da.xindexes` or `da.indexes` raises an error if there are none (in the repr) mathause 10194086 closed 0     1 2023-10-24T12:45:12Z 2023-12-06T17:06:16Z 2023-12-06T17:06:16Z MEMBER      

    What happened?

    da.xindexes or da.indexes raises an error when trying to generate the repr if there are no coords (indexes)

    What did you expect to happen?

    Displaying an empty Mappable?

    Minimal Complete Verifiable Example

    Python xr.DataArray([3, 5]).indexes xr.DataArray([3, 5]).xindexes

    MVCE confirmation

    • [x] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
    • [x] Complete example — the example is self-contained, including all data and the text of any traceback.
    • [x] Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
    • [x] New issue — a search of GitHub Issues suggests this is not a duplicate.
    • [x] Recent environment — the issue occurs with the latest version of xarray and its dependencies.

    Relevant log output

    ```Python Out[9]: --------------------------------------------------------------------------- ValueError Traceback (most recent call last) File ~/.conda/envs/xarray_dev/lib/python3.10/site-packages/IPython/core/formatters.py:708, in PlainTextFormatter.call(self, obj) 701 stream = StringIO() 702 printer = pretty.RepresentationPrinter(stream, self.verbose, 703 self.max_width, self.newline, 704 max_seq_length=self.max_seq_length, 705 singleton_pprinters=self.singleton_printers, 706 type_pprinters=self.type_printers, 707 deferred_pprinters=self.deferred_printers) --> 708 printer.pretty(obj) 709 printer.flush() 710 return stream.getvalue()

    File ~/.conda/envs/xarray_dev/lib/python3.10/site-packages/IPython/lib/pretty.py:410, in RepresentationPrinter.pretty(self, obj) 407 return meth(obj, self, cycle) 408 if cls is not object \ 409 and callable(cls.dict.get('repr')): --> 410 return _repr_pprint(obj, self, cycle) 412 return _default_pprint(obj, self, cycle) 413 finally:

    File ~/.conda/envs/xarray_dev/lib/python3.10/site-packages/IPython/lib/pretty.py:778, in repr_pprint(obj, p, cycle) 776 """A pprint that just redirects to the normal repr function.""" 777 # Find newlines and replace them with p.break() --> 778 output = repr(obj) 779 lines = output.splitlines() 780 with p.group():

    File ~/code/xarray/xarray/core/indexes.py:1659, in Indexes.repr(self) 1657 def repr(self): 1658 indexes = formatting._get_indexes_dict(self) -> 1659 return formatting.indexes_repr(indexes)

    File ~/code/xarray/xarray/core/formatting.py:474, in indexes_repr(indexes, max_rows) 473 def indexes_repr(indexes, max_rows: int | None = None) -> str: --> 474 col_width = _calculate_col_width(chain.from_iterable(indexes)) 476 return _mapping_repr( 477 indexes, 478 "Indexes", (...) 482 max_rows=max_rows, 483 )

    File ~/code/xarray/xarray/core/formatting.py:341, in _calculate_col_width(col_items) 340 def _calculate_col_width(col_items): --> 341 max_name_length = max(len(str(s)) for s in col_items) if col_items else 0 342 col_width = max(max_name_length, 7) + 6 343 return col_width

    ValueError: max() arg is an empty sequence ```

    Anything else we need to know?

    No response

    Environment

    INSTALLED VERSIONS ------------------ commit: ccc8f9987b553809fb6a40c52fa1a8a8095c8c5f python: 3.10.12 | packaged by conda-forge | (main, Jun 23 2023, 22:40:32) [GCC 12.3.0] python-bits: 64 OS: Linux OS-release: 6.2.0-35-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.14.2 libnetcdf: 4.9.2 xarray: 2023.9.1.dev8+gf6d69a1f pandas: 2.1.1 numpy: 1.24.4 scipy: 1.11.3 netCDF4: 1.6.4 pydap: installed h5netcdf: 1.2.0 h5py: 3.9.0 Nio: None zarr: 2.16.1 cftime: 1.6.2 nc_time_axis: 1.4.1 PseudoNetCDF: 3.2.2 iris: 3.7.0 bottleneck: 1.3.7 dask: 2023.9.2 distributed: None matplotlib: 3.8.0 cartopy: 0.22.0 seaborn: 0.12.2 numbagg: 0.2.2 fsspec: 2023.9.2 cupy: None pint: 0.20.1 sparse: 0.14.0 flox: 0.7.2 numpy_groupies: 0.10.1 setuptools: 68.2.2 pip: 23.2.1 conda: None pytest: 7.4.2 mypy: 1.5.1 IPython: 8.15.0 sphinx: None
    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/8367/reactions",
        "total_count": 2,
        "+1": 2,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    722168932 MDU6SXNzdWU3MjIxNjg5MzI= 4513 where should keep_attrs be set in groupby, resample, weighted etc.? mathause 10194086 closed 0     2 2020-10-15T09:36:43Z 2023-11-10T16:58:35Z 2023-11-10T16:58:35Z MEMBER      

    I really should not open this can of worms but per https://github.com/pydata/xarray/issues/4450#issuecomment-697507489:

    I'm always confused about whether ds.groupby(..., keep_attrs=True).mean() or ds.groupby(...).mean(keep_attrs=True) is correct. (similarly for rolling, coarsen etc.)

    Also as I try to fix the keep_attr behavior in #4510 it would be good to know where they should go. So I tried to figure out how this is currently handled and found the following:

    ds.xxx(keep_attrs=True).yyy() - all fixed

    ds.xxx().yyy(keep_attrs=True) - coarsen (fixed in #5227) - groupby - groupby_bin - resample - rolling (adjusted in #4510) - rolling_exp (fixed in #4592) - weighted

    So the working consensus seems to be to to ds.xxx().yyy(keep_attrs=True) - any comments on that?

    (Edit: looking at this it is only half as bad, "only" coarsen, rolling (#4510), and rolling_exp would need to be fixed.)

    Detailed analysis

    ```python import xarray as xr ds = xr.tutorial.open_dataset("air_temperature") da = ds.air ``` ### coarsen ```python ds.coarsen(time=2, keep_attrs=True).mean() # keeps global attributes ds.coarsen(time=2).mean(keep_attrs=True) # keeps DataArray attributes ds.coarsen(time=2, keep_attrs=True).mean(keep_attrs=True) # keeps both da.coarsen(time=2).mean(keep_attrs=True) # error da.coarsen(time=2, keep_attrs=True).mean() # keeps DataArray attributes ``` ### groupby ```python ds.groupby("time.month").mean(keep_attrs=True) # keeps both da.groupby("time.month").mean(keep_attrs=True) # keeps DataArray attributes ds.groupby("time.month", keep_attrs=True).mean() # error da.groupby("time.month", keep_attrs=True).mean() # error ``` ### groupby_bins ```python ds.groupby_bins(ds.lat, np.arange(0, 90, 10)).mean(keep_attrs=True) # keeps both da.groupby_bins(ds.lat, np.arange(0, 90, 10)).mean(keep_attrs=True) # keeps DataArray attrs ds.groupby_bins(ds.lat, np.arange(0, 90, 10), keep_attrs=True) # errors da.groupby_bins(ds.lat, np.arange(0, 90, 10), keep_attrs=True) # errors ``` ### resample ```python ds.resample(time="A").mean(keep_attrs=True) # keeps both da.resample(time="A").mean(keep_attrs=True) # keeps DataArray attributes ds.resample(time="A", keep_attrs=False).mean() # ignored da.resample(time="A", keep_attrs=False).mean() # ignored ``` ### rolling ```python ds.rolling(time=2).mean(keep_attrs=True) # keeps both da.rolling(time=2).mean(keep_attrs=True) # keeps DataArray attributes ds.rolling(time=2, keep_attrs=True).mean() # DeprecationWarning; keeps both da.rolling(time=2, keep_attrs=True).mean() # DeprecationWarning; keeps DataArray attributes ``` see #4510 ### rolling_exp ```python ds.rolling_exp(time=5, keep_attrs=True).mean() # ignored da.rolling_exp(time=5, keep_attrs=True).mean() # ignored ds.rolling_exp(time=5).mean(keep_attrs=True) # keeps both da.rolling_exp(time=5).mean(keep_attrs=True) # keeps DataArray attributes ``` ### weighted ```python ds.weighted(ds.lat).mean(keep_attrs=True) # keeps both da.weighted(ds.lat).mean(keep_attrs=True) # keeps DataArray attrs ```

    edit: moved rolling after #4510, moved rolling_exp after #4592 and coarsen after #5227

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4513/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    1986324822 I_kwDOAMm_X852ZOlW 8436 align fails when more than one xindex is set mathause 10194086 closed 0     2 2023-11-09T20:07:52Z 2023-11-10T12:53:49Z 2023-11-10T12:53:49Z MEMBER      

    What happened?

    I tried a DataArray with more than one dimension coordinate. Unfortunately xr.align fails, which disallows any arithmetic operation - even when the coords are exactly the same.

    What did you expect to happen?

    No response

    Minimal Complete Verifiable Example

    ```Python import numpy as np import xarray as xr

    data = np.arange(12).reshape(3, 4)

    y = [10, 20, 30] s = ["a", "b", "c"]

    x = [1, 2, 3, 4]

    da = xr.DataArray(data, dims=("y", "x"), coords={"x": x, "y": y, "s": ("y", s)}) da = da.set_xindex("s")

    xr.align(da, da.y) # errors da + da # errors da + da.x # errors ```

    MVCE confirmation

    • [ ] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
    • [ ] Complete example — the example is self-contained, including all data and the text of any traceback.
    • [ ] Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
    • [ ] New issue — a search of GitHub Issues suggests this is not a duplicate.
    • [ ] Recent environment — the issue occurs with the latest version of xarray and its dependencies.

    Relevant log output

    ```Python

    ValueError Traceback (most recent call last) /home/mathause/code/mesmer/devel/prepare_for_surfer.ipynb Cell 28 line 1 12 da = xr.DataArray(data, dims=("y", "x"), coords={"x": x, "y": y, "s": ("y", s)}) 13 da = da.set_xindex("s") ---> 15 xr.align(da, da.y) # errors 17 da + da.x # errors

    File ~/.conda/envs/mesmer_dev/lib/python3.9/site-packages/xarray/core/alignment.py:888, in align(join, copy, indexes, exclude, fill_value, *objects) 692 """ 693 Given any number of Dataset and/or DataArray objects, returns new 694 objects with aligned indexes and dimension sizes. ref='~/.conda/envs/mesmer_dev/lib/python3.9/site-packages/xarray/core/alignment.py:0'>0;32m (...) 878 879 """ 880 aligner = Aligner( 881 objects, 882 join=join, ref='~/.conda/envs/mesmer_dev/lib/python3.9/site-packages/xarray/core/alignment.py:0'>0;32m (...) 886 fill_value=fill_value, 887 ) --> 888 aligner.align() 889 return aligner.results

    File ~/.conda/envs/mesmer_dev/lib/python3.9/site-packages/xarray/core/alignment.py:573, in Aligner.align(self) 571 self.find_matching_indexes() 572 self.find_matching_unindexed_dims() --> 573 self.assert_no_index_conflict() 574 self.align_indexes() 575 self.assert_unindexed_dim_sizes_equal()

    File ~/.conda/envs/mesmer_dev/lib/python3.9/site-packages/xarray/core/alignment.py:318, in Aligner.assert_no_index_conflict(self) 314 if dup: 315 items_msg = ", ".join( 316 f"{k!r} ({v} conflicting indexes)" for k, v in dup.items() 317 ) --> 318 raise ValueError( 319 "cannot re-index or align objects with conflicting indexes found for " 320 f"the following {msg}: {items_msg}\n" 321 "Conflicting indexes may occur when\n" 322 "- they relate to different sets of coordinate and/or dimension names\n" 323 "- they don't have the same type\n" 324 "- they may be used to reindex data along common dimensions" 325 )

    ValueError: cannot re-index or align objects with conflicting indexes found for the following dimensions: 'y' (2 conflicting indexes) Conflicting indexes may occur when - they relate to different sets of coordinate and/or dimension names - they don't have the same type - they may be used to reindex data along common dimensions ```

    Anything else we need to know?

    No response

    Environment

    INSTALLED VERSIONS ------------------ commit: feba6984aa914327408fee3c286dae15969d2a2f python: 3.10.12 | packaged by conda-forge | (main, Jun 23 2023, 22:40:32) [GCC 12.3.0] python-bits: 64 OS: Linux OS-release: 6.2.0-36-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.14.2 libnetcdf: 4.9.2 xarray: 2023.9.1.dev8+gf6d69a1f pandas: 2.1.1 numpy: 1.24.4 scipy: 1.11.3 netCDF4: 1.6.4 pydap: installed h5netcdf: 1.2.0 h5py: 3.9.0 Nio: None zarr: 2.16.1 cftime: 1.6.2 nc_time_axis: 1.4.1 PseudoNetCDF: 3.2.2 iris: 3.7.0 bottleneck: 1.3.7 dask: 2023.9.2 distributed: None matplotlib: 3.8.0 cartopy: 0.22.0 seaborn: 0.12.2 numbagg: 0.2.2 fsspec: 2023.9.2 cupy: None pint: 0.20.1 sparse: 0.14.0 flox: 0.7.2 numpy_groupies: 0.10.1 setuptools: 68.2.2 pip: 23.2.1 conda: None pytest: 7.4.2 mypy: 1.5.1 IPython: 8.15.0 sphinx: None
    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/8436/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    1657036222 I_kwDOAMm_X85ixF2- 7730 flox performance regression for cftime resampling mathause 10194086 closed 0     8 2023-04-06T09:38:03Z 2023-10-15T03:48:44Z 2023-10-15T03:48:44Z MEMBER      

    What happened?

    Running an in-memory groupby operation took much longer than expected. Turning off flox fixed this - but I don't think that's the idea ;-)

    What did you expect to happen?

    flox to be at least on par with our naive implementation

    Minimal Complete Verifiable Example

    ```Python import numpy as np import xarray as xr

    arr = np.random.randn(10, 10, 36530) time = xr.date_range("2000", periods=30365, calendar="noleap") da = xr.DataArray(arr, dims=("y", "x", "time"), coords={"time": time})

    using max

    print("max:") xr.set_options(use_flox=True) %timeit da.groupby("time.year").max("time") %timeit da.groupby("time.year").max("time", engine="flox")

    xr.set_options(use_flox=False) %timeit da.groupby("time.year").max("time")

    as reference

    %timeit [da.sel(time=str(year)).max("time") for year in range(2000, 2030)]

    using mean

    print("mean:") xr.set_options(use_flox=True) %timeit da.groupby("time.year").mean("time") %timeit da.groupby("time.year").mean("time", engine="flox")

    xr.set_options(use_flox=False) %timeit da.groupby("time.year").mean("time")

    as reference

    %timeit [da.sel(time=str(year)).mean("time") for year in range(2000, 2030)] ```

    MVCE confirmation

    • [ ] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
    • [ ] Complete example — the example is self-contained, including all data and the text of any traceback.
    • [ ] Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
    • [ ] New issue — a search of GitHub Issues suggests this is not a duplicate.

    Relevant log output

    ```Python max: 158 ms ± 4.41 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) 28.1 ms ± 318 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) 11.5 ms ± 52.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

    mean: 95.6 ms ± 10.8 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) 34.8 ms ± 2.88 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) 15.2 ms ± 232 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) ```

    Anything else we need to know?

    No response

    Environment

    INSTALLED VERSIONS ------------------ commit: f8127fc9ad24fe8b41cce9f891ab2c98eb2c679a python: 3.10.10 | packaged by conda-forge | (main, Mar 24 2023, 20:08:06) [GCC 11.3.0] python-bits: 64 OS: Linux OS-release: 5.15.0-69-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.12.2 libnetcdf: 4.9.1 xarray: main pandas: 1.5.3 numpy: 1.23.5 scipy: 1.10.1 netCDF4: 1.6.3 pydap: installed h5netcdf: 1.1.0 h5py: 3.8.0 Nio: None zarr: 2.14.2 cftime: 1.6.2 nc_time_axis: 1.4.1 PseudoNetCDF: 3.2.2 iris: 3.4.1 bottleneck: 1.3.7 dask: 2023.3.2 distributed: 2023.3.2.1 matplotlib: 3.7.1 cartopy: 0.21.1 seaborn: 0.12.2 numbagg: 0.2.2 fsspec: 2023.3.0 cupy: None pint: 0.20.1 sparse: 0.14.0 flox: 0.6.10 numpy_groupies: 0.9.20 setuptools: 67.6.1 pip: 23.0.1 conda: None pytest: 7.2.2 mypy: None IPython: 8.12.0 sphinx: None
    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/7730/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    1177919687 PR_kwDOAMm_X8403yVS 6403 make more args kw only (except 'dim') mathause 10194086 closed 0     9 2022-03-23T10:28:02Z 2023-10-05T20:38:49Z 2023-10-05T20:38:49Z MEMBER   0 pydata/xarray/pulls/6403
    • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst
    • [ ] New functions/methods are listed in api.rst

    This makes many arguments keyword-only, except for dim to avoid da.weighted(...).mean("lat", "lon") (i.e. da.weighted(...).mean(dim="lat", skipna="lon")) which silently does the wrong thing. I am sure I forgot some and for some I was unsure so I left them as is.

    Question: do we want an deprecation cycle? Currently it just errors for da.weighted(...).mean("dim", True). Might be nice to do it, however, @dcherian if I am not mistaken you did this without a deprecation in #5950, e.g. for da.mean etc.?

    python import numpy as np import xarray as xr air = xr.tutorial.open_dataset("air_temperature") wgt = np.cos(np.deg2rad(air.lat)) air.weighted(wgt).mean("lat", "lon")

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6403/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1917660013 PR_kwDOAMm_X85bc7Pv 8246 update pytest config and un-xfail some tests mathause 10194086 closed 0     1 2023-09-28T14:21:58Z 2023-09-30T01:26:39Z 2023-09-30T01:26:35Z MEMBER   0 pydata/xarray/pulls/8246
    • [ ] Towards #8239
    • [ ] Tests added
    • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
    • [ ] New functions/methods are listed in api.rst

    This partly updates the pytest config as suggested in #8239 and un-xfails some tests (or xfails the tests more precisely).

    See https://github.com/pydata/xarray/issues/8239#issuecomment-1739363809 for why we cannot exactly follow the suggestions given in #8239

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/8246/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    235224055 MDU6SXNzdWUyMzUyMjQwNTU= 1449 time.units truncated when saving to_netcdf mathause 10194086 closed 0     6 2017-06-12T12:58:37Z 2023-09-13T13:25:25Z 2023-09-13T13:25:24Z MEMBER      

    When I manually specify the units attribute for time, and then save the Dataset to_netcdf the string is truncated. See exaple

    import pandas as pd
    import xarray as xr
    
    time = pd.date_range('2000-01-01', '2000-01-31', freq='6h')
    ds = xr.Dataset(coords=dict(time=time))
    
    units = 'days since 1975-01-01 00:00:00'
    calendar = 'gregorian'
    encoding=dict(time=dict(units=units, calendar=calendar))
    
    ds.to_netcdf('test.nc', format='NETCDF4_CLASSIC', encoding=encoding)
    
    ! ncdump -h test.nc
    # time:units = "days since 1975-01-01" ;
    

    Some programs seem to require the hours to be present to interpret the time properly (e.g. panoply). When specifying the hour, a 'T' is added.

    units = 'days since 1975-01-01 01:00:00'
    
    ! ncdump -h test.nc
    # time:units = "days since 1975-01-01T01:00:00" ;
    

    When xarray defines the time.units it works fine.

    ds = xr.Dataset(coords=dict(time=time))
    ds.to_netcdf('test.nc', format='NETCDF4_CLASSIC',)
    
    ! ncdump -h test.nc
    # time:units = "hours since 2000-01-01 00:00:00" ;
    

    xarray version 0.9.6

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/1449/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    1876205625 PR_kwDOAMm_X85ZRl7U 8130 to_stacked_array: better error msg & refactor mathause 10194086 closed 0     0 2023-08-31T19:51:08Z 2023-09-10T15:33:41Z 2023-09-10T15:33:37Z MEMBER   0 pydata/xarray/pulls/8130
    • [x] Tests added
    • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
    • [ ] New functions/methods are listed in api.rst

    I found the error message in ds.to_stacked_array confusing, so I tried to make it clearer. Also renames some if the internal symbols (so should have no user facing change).

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/8130/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1596025651 PR_kwDOAMm_X85Kj_KM 7548 supress namespace_package deprecation warning (doctests) mathause 10194086 closed 0     0 2023-02-23T00:15:41Z 2023-02-23T18:38:16Z 2023-02-23T18:38:15Z MEMBER   0 pydata/xarray/pulls/7548

    Suppress the pkg_resources.namespace_package DeprecationError to make the doctest pass again (similar to #7322). This is reported upstream: pydap/pydap#277 and matplotlib/matplotlib#25244

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/7548/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1086346755 PR_kwDOAMm_X84wKOjC 6096 Replace distutils.version with packaging.version mathause 10194086 closed 0     9 2021-12-22T00:51:21Z 2023-01-20T21:00:42Z 2021-12-24T14:50:48Z MEMBER   0 pydata/xarray/pulls/6096
    • [x] Closes #6092
    • [x] Passes pre-commit run --all-files
    • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst

    One change is that it is no longer possible to compare to a string, i.e. version.parse(xr.__version__) < "0.20.0" errors.

    As mentioned in #6092 there are 3 options - if there is a preference I am happy to update this PR.

    ```python from distutils.version import LooseVersion from packaging import version

    LooseVersion(xr.version) version.parse(xr.version) version.Version(xr.version)

    currently:

    if LooseVersion(mod.version) < LooseVersion(minversion): pass

    options:

    if version.parse(mod.version) < version.parse(minversion): pass

    if version.Version(mod.version) < version.Version(minversion): pass

    if Version(mod.version) < Version(minversion): pass ```

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6096/reactions",
        "total_count": 3,
        "+1": 3,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1466191758 PR_kwDOAMm_X85Dylku 7326 fix doctests: supress urllib3 warning mathause 10194086 closed 0     1 2022-11-28T10:40:46Z 2022-12-05T20:11:16Z 2022-11-28T19:31:03Z MEMBER   0 pydata/xarray/pulls/7326
    • [x] Closes #7322
    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/7326/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1285767883 PR_kwDOAMm_X846ahUs 6730 move da and ds fixtures to conftest.py mathause 10194086 closed 0     9 2022-06-27T12:56:05Z 2022-12-05T20:11:08Z 2022-07-11T12:44:55Z MEMBER   0 pydata/xarray/pulls/6730

    This PR renames the da and ds fixtures (to da_fixture and ds_fixture) and moves them to conftest.py. This allows to remove the flake8 error suppression for the tests and seems more how the fixtures are intended to be used (from the pytest side). I think the name changes makes it a bit more obvious what happens but moving them to may make it a bit less obvious (if you don't know where to look).

    Removing the flake8 error ignores also unearthed some unused imports:

    https://github.com/pydata/xarray/blob/787a96c15161c9025182291b672b3d3c5548a6c7/setup.cfg#L155-L156

    (What I actually wanted to do is move the tests for rolling to it's own file - but I think it makes sense to do this first.)

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6730/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1344222732 PR_kwDOAMm_X849c2Wu 6934 deprecate_positional_args: remove stray print mathause 10194086 closed 0     0 2022-08-19T09:58:53Z 2022-12-05T20:11:08Z 2022-08-19T10:25:32Z MEMBER   0 pydata/xarray/pulls/6934

    I forgot to remove some debug print statements in #6910 - thanks for noting @shoyer & @dcherian

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6934/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1464824094 PR_kwDOAMm_X85DuSjU 7321 fix flake8 config mathause 10194086 closed 0     2 2022-11-25T18:16:07Z 2022-11-28T10:36:29Z 2022-11-28T10:33:00Z MEMBER   0 pydata/xarray/pulls/7321

    flake8 v6 now errors on inline comments in the config file. I don't like it but oh well...

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/7321/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    715730538 MDU6SXNzdWU3MTU3MzA1Mzg= 4491 deprecate pynio backend mathause 10194086 closed 0     21 2020-10-06T14:27:20Z 2022-11-26T15:40:37Z 2022-11-26T15:40:37Z MEMBER      

    We are currently not testing with the newest version of netCDF4 because it is incompatible with pynio (the newest version is 1.5.4, we are at 1.5.3). This is unlikely to be fixed, see conda-forge/pynio-feedstock#90.

    Therefore we need to think how to setup the tests so we use the newest version of netCDF4. Maybe just remove it from py38.yml?

    And long term what to do with the pynio backend? Deprecate? Move to an external repo?

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4491/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    1372729718 I_kwDOAMm_X85R0jF2 7036 index refactor: more `_coord_names` than `_variables` on Dataset mathause 10194086 closed 0     3 2022-09-14T10:19:00Z 2022-09-27T10:35:40Z 2022-09-27T10:35:40Z MEMBER      

    What happened?

    xr.core.dataset.DataVariables assumes that everything that is in ds._dataset._variables and not in self._dataset._coord_names is a "data variable". However, since the index refactor we can end up with more _coord_names than _variables which breaks a number of stuff (e.g. the repr).

    What did you expect to happen?

    Well it seems this assumption is now wrong.

    Minimal Complete Verifiable Example

    Python ds = xr.Dataset(coords={"a": ("x", [1, 2, 3]), "b": ("x", ['a', 'b', 'c'])}) ds.set_index(z=['a', 'b']).reset_index("z", drop=True)

    MVCE confirmation

    • [ ] Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
    • [ ] Complete example — the example is self-contained, including all data and the text of any traceback.
    • [ ] Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
    • [ ] New issue — a search of GitHub Issues suggests this is not a duplicate.

    Relevant log output

    Python ValueError: __len__() should return >= 0

    Anything else we need to know?

    The error comes from here

    https://github.com/pydata/xarray/blob/63ba862d03c8d0cd8b44d2071bc360e9fed4519d/xarray/core/dataset.py#L368

    Bisected to #5692 - which probably does not help too much.

    Environment

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/7036/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    1118802352 PR_kwDOAMm_X84xzhTi 6212 better warning filter for assert_* mathause 10194086 closed 0     1 2022-01-31T00:22:37Z 2022-09-05T07:52:09Z 2022-09-05T07:52:06Z MEMBER   0 pydata/xarray/pulls/6212

    In #4864 I added a a decorator for the xarray.testing.assert_* functions to ensure warnings that were to errors (pytest.mark.filterwarnings("error")) do not error in assert_* (see https://github.com/pydata/xarray/pull/4760#issuecomment-774101639). As a solution I added

    https://github.com/pydata/xarray/blob/5470d933452d88deb17cc9294a164c4a03f55dec/xarray/testing.py#L32

    However, this is sub-optimal because this now removes all ignore filters! As dask stuff only gets evaluated in assert_* filters like warnings.filterwarnings("ignore", "Mean of empty slice") don't work for dask arrays!

    I thought of setting

    python warnings.simplefilter("ignore")

    but this could suppress warnings we want to keep.

    So now I remove all "error" warning filters and keep the rest. Note that the original filters get restored after with warnings.catch_warnings():. ().


    I am not sure I expressed myself very clearly... let me know and I can try again. @keewis you had a look at #4864 maybe you can review this PR as well?

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6212/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1355581692 PR_kwDOAMm_X84-Cbgk 6967 fix _deprecate_positional_args helper mathause 10194086 closed 0     0 2022-08-30T11:02:33Z 2022-09-02T21:54:07Z 2022-09-02T21:54:03Z MEMBER   0 pydata/xarray/pulls/6967

    I tried to use the _deprecate_positional_args decorator from #6934 & it turns out that it still had some errors - passing on the arguments did not work properly in certain cases... I now added tests for this as well (which I should have done in the first place...).

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6967/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1355361572 PR_kwDOAMm_X84-Brev 6966 enable pydap in tests again mathause 10194086 closed 0     1 2022-08-30T08:18:07Z 2022-09-01T10:16:05Z 2022-09-01T10:16:03Z MEMBER   0 pydata/xarray/pulls/6966

    5844 excluded pydap from our tests - but the new version has been released in the meantime (on conda not on pypi, though, pydap/pydap#268) - so let's see if this still works.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6966/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1355349486 PR_kwDOAMm_X84-Bo54 6965 no longer install pydap for 'io' extras in py3.10 mathause 10194086 closed 0     2 2022-08-30T08:08:12Z 2022-09-01T10:15:30Z 2022-09-01T10:15:27Z MEMBER   0 pydata/xarray/pulls/6965
    • [x] Closes #6960
    • [ ] Tests added - tested manually
    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6965/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1331969418 PR_kwDOAMm_X8480cLZ 6890 tests don't use `pytest.warns(None)` mathause 10194086 closed 0     0 2022-08-08T14:36:01Z 2022-08-30T12:15:33Z 2022-08-08T17:27:53Z MEMBER   0 pydata/xarray/pulls/6890

    Get rid of some warnings in the tests.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6890/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1344900323 PR_kwDOAMm_X849fIGC 6937 terminology: fix italics [skip-ci] mathause 10194086 closed 0     0 2022-08-19T21:13:52Z 2022-08-20T07:30:41Z 2022-08-20T07:30:41Z MEMBER   0 pydata/xarray/pulls/6937
    • [x] Closes #6932

    @zmoon - obviously it would be nice if we had a linter for this but this is for another time.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6937/reactions",
        "total_count": 2,
        "+1": 2,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1337166287 PR_kwDOAMm_X849FuuD 6910 decorator to deprecate positional arguments mathause 10194086 closed 0     7 2022-08-12T12:48:47Z 2022-08-18T18:14:09Z 2022-08-18T15:59:52Z MEMBER   0 pydata/xarray/pulls/6910
    • [x] Supersedes #6403, see also #5531
    • [x] Tests added
    • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
    • [ ] New functions/methods are listed in api.rst

    Adds a helper function to deprecate positional arguments. IMHO this offers a good trade-off between magic and complexity. (As mentioned this was adapted from scikit-learn).

    edit: I suggest to actually deprecate positional arguments in another PR.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6910/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1155634014 PR_kwDOAMm_X84zvnTl 6316 fix typos (using codespell) mathause 10194086 closed 0     2 2022-03-01T17:52:24Z 2022-07-18T13:33:02Z 2022-03-02T13:57:29Z MEMBER   0 pydata/xarray/pulls/6316

    fix some typos (using codespell). Called using:

    bash codespell --skip=".git,.mypy_cache,*.tex" --ignore-words-list coo,nd,inferrable,hist,ND,splitted,soler,slowy,ba,ser,nin,te,fo -w -i 3

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6316/reactions",
        "total_count": 2,
        "+1": 2,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    144630996 MDU6SXNzdWUxNDQ2MzA5OTY= 810 correct DJF mean mathause 10194086 closed 0     4 2016-03-30T15:36:42Z 2022-04-06T16:19:47Z 2016-05-04T12:56:30Z MEMBER      

    This started as a question and I add it as reference. Maybe you have a comment.

    There are several ways to calculate time series of seasonal data (starting from monthly or daily data):

    ```

    load libraries

    import pandas as pd import matplotlib.pyplot import numpy as np import xarray as xr

    Create Example Dataset

    time = pd.date_range('2000.01.01', '2010.12.31', freq='M') data = np.random.rand(*time.shape) ds = xr.DataArray(data, coords=dict(time=time))

    (1) using resample

    ds_res = ds.resample('Q-FEB', 'time') ds_res = ds_res.sel(time=ds_res['time.month'] == 2) ds_res = ds_res.groupby('time.year').mean('time')

    (2) this is wrong

    ds_season = ds.where(ds['time.season'] == 'DJF').groupby('time.year').mean('time')

    (3) using where and rolling

    mask other months with nan

    ds_DJF = ds.where(ds['time.season'] == 'DJF')

    rolling mean -> only Jan is not nan

    however, we loose Jan/ Feb in the first year and Dec in the last

    ds_DJF = ds_DJF.rolling(min_periods=3, center=True, time=3).mean()

    make annual mean

    ds_DJF = ds_DJF.groupby('time.year').mean('time')

    ds_res.plot(marker='*') ds_season.plot() ds_DJF.plot()

    plt.show() ```

    (1) The first is to use resample with 'Q-FEB' as argument. This works fine. It does include Jan/ Feb in the first year, and Dec in the last year + 1. If this makes sense can be debated. One case where this does not work is when you have, say, two regions in your data set, for one you want to calculate DJF and for the other you want NovDecJan.

    (2) Using 'time.season' is wrong as it combines Jan, Feb and Dec from the same year.

    (3) The third uses where and rolling and you lose 'incomplete' seasons. If you replace ds.where(ds['time.season'] == 'DJF') with ds.groupby('time.month').where(summer_months), where summer_months is a boolean array it works also for non-standard 'summers' (or seasons) across the globe.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/810/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    1150224882 PR_kwDOAMm_X84zdCrl 6303 quantile: use skipna=None mathause 10194086 closed 0     0 2022-02-25T09:24:05Z 2022-03-03T09:43:38Z 2022-03-03T09:43:35Z MEMBER   0 pydata/xarray/pulls/6303
    • [x] Tests added
    • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst

    skipna=None did not skip missing values for quantile, inconsistent with other methods. Discovered while testing #6059.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6303/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1149708477 PR_kwDOAMm_X84zbVnG 6302 from_dict: doctest mathause 10194086 closed 0     0 2022-02-24T20:17:24Z 2022-02-28T09:11:05Z 2022-02-28T09:11:02Z MEMBER   0 pydata/xarray/pulls/6302
    • [x] Closes #6136

    Convert the code block in xr.DataArray.from_dict and xr.Dataset.from_dict to doctest/ examples.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6302/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1126086052 PR_kwDOAMm_X84yLQ48 6251 use `warnings.catch_warnings(record=True)` instead of `pytest.warns(None)` mathause 10194086 closed 0     4 2022-02-07T14:42:26Z 2022-02-18T16:51:58Z 2022-02-18T16:51:55Z MEMBER   0 pydata/xarray/pulls/6251

    pytest v7.0.0 no longer want's us to use pytest.warns(None) to test for no warning, so we can use warnings.catch_warnings(record=True) instead.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6251/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1088615118 PR_kwDOAMm_X84wRifr 6108 quantile: rename interpolation arg to method mathause 10194086 closed 0     3 2021-12-25T15:06:44Z 2022-02-08T17:09:47Z 2022-02-07T09:40:05Z MEMBER   0 pydata/xarray/pulls/6108

    numpy/numpy#20327 introduces some changes to np.quantile (and related) for the upcoming numpy release (v1.22.0). It renames the interpolation keyword to method and offers some new interpolation methods. This PR does two things

    1. it restores compatibility with numpy 1.22
    2. it renames the interpolation keyword to method in xarray - this change is not strictly necessary but I thought better to be consistent with numpy

    3. [x] Tests added

    4. [x] Passes pre-commit run --all-files
    5. [x] User visible changes (including notable bug fixes) are documented in whats-new.rst

    (Side note in dask.array.percentile the method keyword is used differently from the interpolation keyword (docs). However, xarray does not use the dask function.)


    TODO: need to import ArrayLike from npcompat.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6108/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1125661464 PR_kwDOAMm_X84yJ3Rz 6248 test bottleneck master in upstream CI [test-upstream] [skip-ci] mathause 10194086 closed 0     1 2022-02-07T08:25:35Z 2022-02-07T09:05:28Z 2022-02-07T09:05:24Z MEMBER   0 pydata/xarray/pulls/6248
    • [x] Closes #6186

    pydata/bottleneck#378 was merged - so this should work again.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6248/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1111644832 I_kwDOAMm_X85CQlqg 6186 upstream dev CI: enable bottleneck again mathause 10194086 closed 0     2 2022-01-22T18:11:25Z 2022-02-07T09:05:24Z 2022-02-07T09:05:24Z MEMBER      

    bottleneck cannot be built with python 3.10. See https://github.com/pydata/xarray/actions/runs/1731371015

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6186/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    1118836906 PR_kwDOAMm_X84xzojx 6213 fix or suppress test warnings mathause 10194086 closed 0     1 2022-01-31T01:34:20Z 2022-02-01T09:40:15Z 2022-02-01T09:40:11Z MEMBER   0 pydata/xarray/pulls/6213

    Fixes or suppresses a number of warnings that turn up in our upstream CI.

    pd.Index.is_monotonic is an alias for pd.Index.is_monotonic_increasing and does not stand for pd.Index.is_monotonic_increasing or pd.Index.is_monotonic_decreasing.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6213/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1118168483 PR_kwDOAMm_X84xxms4 6208 Revert "MNT: prepare h5netcdf backend for (coming) change in dimension handling" mathause 10194086 closed 0     8 2022-01-29T10:27:11Z 2022-01-29T13:48:17Z 2022-01-29T13:20:51Z MEMBER   0 pydata/xarray/pulls/6208

    Reverts pydata/xarray#6200

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6208/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1114414215 PR_kwDOAMm_X84xlfet 6194 doc: fix pd datetime parsing warning [skip-ci] mathause 10194086 closed 0     0 2022-01-25T22:12:53Z 2022-01-28T08:37:18Z 2022-01-28T05:41:49Z MEMBER   0 pydata/xarray/pulls/6194

    And another tiny one... The somewhat ambiguous date string triggers a warning in pandas which makes our doc build fail.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6194/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1115026697 PR_kwDOAMm_X84xneFL 6195 MAINT: pandas 1.4: no longer use get_loc with method mathause 10194086 closed 0     5 2022-01-26T13:35:04Z 2022-01-27T22:11:04Z 2022-01-27T21:06:40Z MEMBER   0 pydata/xarray/pulls/6195
    • [x] Closes #5721
    • [ ] Tests added
    • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst

    Fixed as per @shoyer & @spencerkclark suggestion from https://github.com/pydata/xarray/issues/5721#issuecomment-903095007

    Now that pandas 1.4 is out it would be good to get this fixed (there are about 5000 warnings in our tests, mostly because of interp, though). Also leads to a warning in our docs which breaks them (although that can also be fixed with an :okwarning: directive).

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6195/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    975385095 MDU6SXNzdWU5NzUzODUwOTU= 5721 pandas deprecates Index.get_loc with method mathause 10194086 closed 0     7 2021-08-20T08:24:16Z 2022-01-27T21:06:40Z 2022-01-27T21:06:40Z MEMBER      

    pandas deprecates the method keyword in Index.get_loc, see pandas-dev/pandas#42269. Therefore we end up with about 5000 warnings in our upstream tests:

    FutureWarning: Passing method to Index.get_loc is deprecated and will raise in a future version. Use index.get_indexer([item], method=...) instead

    We should fix this before pandas releases because the warning will not be silent (FutureWarning) or ask pandas to give us more time and use a DeprecationWarning at the moment.

    We use this here: https://github.com/pydata/xarray/blob/4bb9d9c6df77137f05e85c7cc6508fe7a93dc0e4/xarray/core/indexes.py#L233-L235 Is this only ever called with one item? Then we might be able to use ```python indexer = self.index.get_indexer( [label_value], method=method, tolerance=tolerance ).item() if indexer == -1: raise KeyError(label_value) ``` --- https://github.com/pydata/xarray/blob/3956b73a7792f41e4410349f2c40b9a9a80decd2/xarray/core/missing.py#L571-L572 This one could be easy to fix (replace with `imin = index.get_indexer([minval], method="nearest").item()`) --- It is also defined in `CFTimeIndex`, which complicates things: https://github.com/pydata/xarray/blob/eea76733770be03e78a0834803291659136bca31/xarray/coding/cftimeindex.py#L461-L466 because `get_indexer` expects an iterable and thus the `if isinstance(key, str)` test no longer works.

    @benbovy @spencerkclark

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/5721/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    1114392372 PR_kwDOAMm_X84xla15 6192 fix cftime doctests mathause 10194086 closed 0     0 2022-01-25T21:43:55Z 2022-01-26T21:45:19Z 2022-01-26T21:45:17Z MEMBER   0 pydata/xarray/pulls/6192

    Fixes the doctests for the newest version of cftime. @spencerkclark

    This of course means that the doctests will fail for environments with older versions of cftime present. I don't think there is anything we can do.

    Thanks for pytest-accept b.t.w @max-sixty

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6192/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1039272725 PR_kwDOAMm_X84t1ecc 5914 #5740 follow up: supress xr.ufunc warnings in tests mathause 10194086 closed 0     2 2021-10-29T07:53:07Z 2022-01-26T08:41:41Z 2021-10-29T15:16:03Z MEMBER   0 pydata/xarray/pulls/5914

    5740 changed PendingDeprecationWarning to FutureWarning - suppress the warnings again in the test suite.

    https://github.com/pydata/xarray/blob/36f05d70c864ee7c61603c8a43ba721bf7f434b3/xarray/ufuncs.py#L47-L49

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/5914/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1083281083 PR_kwDOAMm_X84wATnw 6082 cftime: 'gregorian' -> 'standard' [test-upstream] mathause 10194086 closed 0     3 2021-12-17T13:51:07Z 2022-01-26T08:41:33Z 2021-12-22T11:40:05Z MEMBER   0 pydata/xarray/pulls/6082
    • [x] Closes #6016

    cftime 1.5.2 renames "gregorian" to "standard". AFAIK this only changes the repr of cftime indices and does not seem to influence the creation of cftime indices.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6082/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1088419434 PR_kwDOAMm_X84wQ-nD 6107 is_dask_collection: micro optimization mathause 10194086 closed 0     1 2021-12-24T15:04:42Z 2022-01-26T08:41:28Z 2021-12-29T16:27:55Z MEMBER   0 pydata/xarray/pulls/6107

    In #6096 I realized that DuckArrayModule("dask") is called a lot in our tests - 145'835 times. Most of those are from is_dask_collection (is_duck_dask_array) This change avoids that the instance needs to be built every time.

    ```python import xarray as xr

    %timeit xr.core.pycompat.DuckArrayModule("dask").available %timeit xr.core.pycompat.dsk.available ```

    18.9 µs ± 97.7 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each) 77.1 ns ± 1.22 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

    Which leads to an incredible speed up of our tests of about 2.7 s :grin: ((18.9 - 0.0771) * 145835 / 1e6).

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6107/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    752870062 MDExOlB1bGxSZXF1ZXN0NTI5MDc4NDA0 4616 don't type check __getattr__ mathause 10194086 closed 0     4 2020-11-29T08:53:09Z 2022-01-26T08:41:18Z 2021-10-18T14:06:30Z MEMBER   1 pydata/xarray/pulls/4616
    • [x] Closes #4601
    • [x] Passes isort . && black . && mypy . && flake8
    • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst

    It's not pretty as I had to define a number of empty methods... I think this should wait for 0.17

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4616/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    778069594 MDExOlB1bGxSZXF1ZXN0NTQ4MjI1MDQz 4760 WIP: testing.assert_* check dtype mathause 10194086 closed 0     8 2021-01-04T12:45:00Z 2022-01-26T08:41:17Z 2021-10-18T14:06:38Z MEMBER   1 pydata/xarray/pulls/4760
    • [x] Closes #4727
    • [ ] Tests added
    • [ ] Passes isort . && black . && mypy . && flake8
    • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst
    • [ ] New functions/methods are listed in api.rst

    This adds a dtype check for equal, identical, broadcast_equal, and the xr.testing.assert_* functions. It is far from complete: tests and documentation are still missing, but I wanted to get it online for feedback.

    When I set check_dtype=True there are around 600 failures. Fixing that is for another PR. #4759 should help a bit.

    • [ ] I added the checks to lazy_array_equiv, however, sometimes dask can get the dtype wrong before the compute (see below). Do you think I need to put it in the non-lazy part?

    ```python import numpy as np import xarray as xr

    da = xr.DataArray(np.array([0, np.nan], dtype=object)).chunk()

    da.prod().dtype # -> dtype('O') da.prod().compute().dtype # -> dtype('int64')

    ```

    • [ ] check_dtype is still missing from assert_duckarray_allclose & assert_duckarray_equal - do you think there are required?

    • [ ] The dtypes of array elements are not tested (see below). I don't think I'll implement that here.

    ```python da0 = xr.DataArray(np.array([0], dtype=object)) da1 = xr.DataArray(np.array([0.], dtype=object))

    xr.testting.assert_equal(da0, da1, check_dtype=True) ```

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4760/reactions",
        "total_count": 2,
        "+1": 2,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1107431006 PR_kwDOAMm_X84xOsZX 6171 unpin dask again mathause 10194086 closed 0     1 2022-01-18T22:37:31Z 2022-01-26T08:41:02Z 2022-01-18T23:39:12Z MEMBER   0 pydata/xarray/pulls/6171
    • dask 2022.01 is out, so we can remove the pin
    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6171/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1109572055 PR_kwDOAMm_X84xVqMq 6177 remove no longer necessary version checks mathause 10194086 closed 0     2 2022-01-20T17:24:21Z 2022-01-26T08:40:55Z 2022-01-21T18:00:51Z MEMBER   0 pydata/xarray/pulls/6177

    I hunted down some version checks that should no longer be necessary as we have moved beyond the minimum versions.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6177/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1114401347 PR_kwDOAMm_X84xlcvk 6193 don't install bottleneck wheel for upstream CI mathause 10194086 closed 0     3 2022-01-25T21:55:49Z 2022-01-26T08:31:42Z 2022-01-26T08:31:39Z MEMBER   0 pydata/xarray/pulls/6193
    • [x] see #6186

    I think it would be good to re-enable the upstream CI, even if this means we have to stick to py3.9 for the moment. I just subscribed to pydata/bottleneck#378, so I should see when we can switch to 3.10.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6193/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1099288617 PR_kwDOAMm_X84wzh1F 6155 typing fixes for mypy 0.931 and numpy 1.22 mathause 10194086 closed 0     2 2022-01-11T15:19:43Z 2022-01-13T17:13:00Z 2022-01-13T17:12:57Z MEMBER   0 pydata/xarray/pulls/6155

    typing fixes for mypy 0.931 and numpy 1.22. Also tested with numpy 1.20 which probably many still have installed.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6155/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    432074821 MDU6SXNzdWU0MzIwNzQ4MjE= 2889 nansum vs nanmean for all-nan vectors mathause 10194086 closed 0     3 2019-04-11T15:04:39Z 2022-01-05T21:59:48Z 2019-04-11T16:08:02Z MEMBER      

    ```python import xarray as xr import numpy as np

    ds = xr.DataArray([np.NaN, np.NaN])

    ds.mean() ds.sum()

    ```

    Problem description

    ds.mean() returns NaN, ds.sum() returns 0. This comes from numpy (cp np.nanmean vs. np.nansum), so it might have to be discussed upstream, but I wanted to ask the xarray community first on their opinion. This is also relevant for #422 (what happens if the all weights are NaN or sum up to 0).

    Expected Output

    I would expect both to return np.nan.

    Output of xr.show_versions()

    INSTALLED VERSIONS ------------------ commit: None python: 3.7.3 | packaged by conda-forge | (default, Mar 27 2019, 23:01:00) [GCC 7.3.0] python-bits: 64 OS: Linux OS-release: 4.4.176-96-default machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: en_GB.UTF-8 libhdf5: 1.10.4 libnetcdf: 4.6.2 xarray: 0.12.1 pandas: 0.24.2 numpy: 1.16.2 scipy: 1.2.1 netCDF4: 1.5.0.1 pydap: None h5netcdf: 0.7.1 h5py: 2.9.0 Nio: None zarr: None cftime: 1.0.3.4 nc_time_axis: 1.2.0 PseudonetCDF: None rasterio: 1.0.22 cfgrib: None iris: None bottleneck: 1.2.1 dask: 1.1.5 distributed: 1.26.1 matplotlib: 3.0.3 cartopy: 0.17.0 seaborn: 0.9.0 setuptools: 41.0.0 pip: 19.0.3 conda: None pytest: 4.4.0 IPython: 7.4.0 sphinx: 2.0.1
    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/2889/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    1078998718 PR_kwDOAMm_X84vyLHe 6077 disable pytest-xdist (to check CI failure) mathause 10194086 closed 0     3 2021-12-13T20:43:38Z 2022-01-03T08:30:02Z 2021-12-22T12:55:23Z MEMBER   0 pydata/xarray/pulls/6077

    Our CI fails with some pytest-xdist error. Let's see if we get a clearer picture when disabling parallel tests. (Maybe some interaction between dask and pytest-xdist?).

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6077/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1090752550 PR_kwDOAMm_X84wYT5m 6127 Revert "disable pytest-xdist (to check CI failure)" mathause 10194086 closed 0     2 2021-12-29T21:15:36Z 2022-01-03T08:29:52Z 2022-01-03T08:29:49Z MEMBER   0 pydata/xarray/pulls/6127
    • [x] Closes #6101

    Reverts pydata/xarray#6077 (after dask has been pinned in #6111)

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6127/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1086797050 I_kwDOAMm_X85AxzT6 6101 enable pytest-xdist again (after dask release) mathause 10194086 closed 0     0 2021-12-22T12:57:03Z 2022-01-03T08:29:48Z 2022-01-03T08:29:48Z MEMBER      

    I disabled pytest-xdist because a dask issue renders our CI unusable. As soon as dask releases a new version we should revert #6077 again.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6101/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    1086360190 PR_kwDOAMm_X84wKRVp 6097 fix tests for h5netcdf v0.12 mathause 10194086 closed 0     6 2021-12-22T01:22:09Z 2021-12-23T20:29:33Z 2021-12-23T20:29:12Z MEMBER   0 pydata/xarray/pulls/6097

    h5netcdf no longer warns for invalid netCDF (unless passing save_kwargs = {"invalid_netcdf": True}. We need to adapt our tests.

    @kmuehlbauer


    edit: I added h5netcdf to the upstream tests - I can also revert this change if you prefer.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/6097/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1036287825 PR_kwDOAMm_X84tryph 5899 [test-upstream] fix pd skipna=None mathause 10194086 closed 0     2 2021-10-26T13:16:21Z 2021-10-28T11:54:49Z 2021-10-28T11:46:04Z MEMBER   0 pydata/xarray/pulls/5899
    • [x] Closes #5872
    • [x] Passes pre-commit run --all-files

    pandas will disallow skipna=None (pandas-dev/pandas#44178) - this fixes a test which relies on this. I don't think we have any user facing use of this. AFAIK we don't use pandas for reductions anywhere)

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/5899/reactions",
        "total_count": 2,
        "+1": 2,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    1029142676 PR_kwDOAMm_X84tVCEd 5875 fix test with pseudonetcdf 3.2 mathause 10194086 closed 0     5 2021-10-18T13:49:23Z 2021-10-22T21:24:09Z 2021-10-22T21:23:34Z MEMBER   0 pydata/xarray/pulls/5875

    Fixes one part of #5872

    pseudoNETCDF adds two attrs to ict files, which breaks the following two tests:

    Test 1: https://github.com/pydata/xarray/blob/07de257c5884df49335496ee6347fb633a7c302c/xarray/tests/test_backends.py#L3944 Test 2:

    https://github.com/pydata/xarray/blob/07de257c5884df49335496ee6347fb633a7c302c/xarray/tests/test_backends.py#L4030

    I reproduced the test file so that the tests pass again. To reproduce the file I used the following bit of code:

    ```python import xarray as xr from xarray.tests import test_backends

    fN = "xarray/tests/data/example.ict" fmtkw = {"format": "ffi1001"}

    ds = xr.open_dataset(fN, engine="pseudonetcdf", backend_kwargs={"format": "ffi1001"})

    c = test_backends.TestPseudoNetCDFFormat() c.save(ds, fN, **fmtkw) ```

    The save method is here:

    https://github.com/pydata/xarray/blob/07de257c5884df49335496ee6347fb633a7c302c/xarray/tests/test_backends.py#L4124

    @barronh I would appreciate your review here - I am not sure if this is the right approach.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/5875/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    877166445 MDExOlB1bGxSZXF1ZXN0NjMxMTcwNzI4 5265 Warn ignored keep attrs mathause 10194086 closed 0     1 2021-05-06T07:20:16Z 2021-10-18T14:06:37Z 2021-05-06T16:31:05Z MEMBER   0 pydata/xarray/pulls/5265
    • [x] Part of #4513
    • [x] Tests added
    • [x] Passes pre-commit run --all-files
    • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst

    This PR warns when passing keep_attrs to resample(..., keep_attrs=True) and rolling_exp(..., keep_attrs=True) as they have no effect (rightfully). Also removes keep_attrs from the docstring of resample.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/5265/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    869763597 MDExOlB1bGxSZXF1ZXN0NjI1MDc0NjA5 5227 coarsen: better keep_attrs mathause 10194086 closed 0     0 2021-04-28T09:56:45Z 2021-10-18T14:06:35Z 2021-04-29T17:40:57Z MEMBER   0 pydata/xarray/pulls/5227
    • [x] Part of #4513 (maybe the last one - need to double check)
    • [x] Tests added
    • [x] Passes pre-commit run --all-files
    • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst

    As per https://github.com/pydata/xarray/issues/3891#issuecomment-612522628 I also changed the default to True.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/5227/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    758033677 MDExOlB1bGxSZXF1ZXN0NTMzMjc0NDY3 4656 unpin pip 20.2 again mathause 10194086 closed 0     7 2020-12-06T22:00:12Z 2021-10-18T14:06:34Z 2021-04-18T21:42:25Z MEMBER   0 pydata/xarray/pulls/4656

    Another enormous PR from my side ;) unpin pip again. numpy probably fixed the issue re the name of the nightly build. But I also need to doublecheck if scipy is ok.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4656/reactions",
        "total_count": 2,
        "+1": 2,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    802400938 MDExOlB1bGxSZXF1ZXN0NTY4NTUwNDEx 4865 fix da.pad example for numpy 1.20 mathause 10194086 closed 0     4 2021-02-05T19:00:04Z 2021-10-18T14:06:33Z 2021-02-07T21:57:34Z MEMBER   0 pydata/xarray/pulls/4865
    • [x] Closes #4858
    • [x] Passes pre-commit run --all-files
    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4865/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    794344392 MDExOlB1bGxSZXF1ZXN0NTYxODc2OTg5 4845 iris update doc url mathause 10194086 closed 0     1 2021-01-26T15:51:18Z 2021-10-18T14:06:31Z 2021-01-26T17:30:20Z MEMBER   0 pydata/xarray/pulls/4845

    iris moved its documentation to https://scitools-iris.readthedocs.io/en/stable/

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4845/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    738958305 MDExOlB1bGxSZXF1ZXN0NTE3NzA0OTI2 4569 pin h5py to v2.10 mathause 10194086 closed 0     0 2020-11-09T11:46:39Z 2021-10-18T14:06:28Z 2020-11-09T12:52:27Z MEMBER   0 pydata/xarray/pulls/4569

    There is a compatibility issue with h5py v3. Pin h5py to version 2 for the moment. I can open an issue shortly.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4569/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    724975973 MDExOlB1bGxSZXF1ZXN0NTA2Mjc3OTk4 4525 unpin eccodes again mathause 10194086 closed 0     2 2020-10-19T21:07:23Z 2021-10-18T14:06:27Z 2020-10-19T22:21:13Z MEMBER   0 pydata/xarray/pulls/4525
    • [x] Closes #4521
    • [x] Passes isort . && black . && mypy . && flake8

    That was fast - eccodes already fixed the issue.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4525/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    684430261 MDExOlB1bGxSZXF1ZXN0NDcyMzE4MzUw 4371 mention all ignored flake8 errors mathause 10194086 closed 0     1 2020-08-24T07:17:03Z 2021-10-18T14:06:18Z 2020-08-24T10:45:05Z MEMBER   0 pydata/xarray/pulls/4371

    and put the comment on the same line

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4371/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    577830239 MDExOlB1bGxSZXF1ZXN0Mzg1NTIyOTEy 3849 update installation instruction mathause 10194086 closed 0     6 2020-03-09T11:14:13Z 2021-10-18T14:06:16Z 2020-03-09T14:07:03Z MEMBER   0 pydata/xarray/pulls/3849
    • [x] Closes #3756
    • [x] Fully documented, including whats-new.rst for all changes and api.rst for new API
    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/3849/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    572269093 MDExOlB1bGxSZXF1ZXN0MzgxMDAyMTU2 3805 un-xfail tests that append to netCDF files with scipy mathause 10194086 closed 0     3 2020-02-27T18:23:56Z 2021-10-18T14:06:14Z 2020-03-09T07:18:07Z MEMBER   0 pydata/xarray/pulls/3805
    • [x] Closes #2019
    • [ ] Tests added
    • [x] Passes isort -rc . && black . && mypy . && flake8
    • [ ] Fully documented, including whats-new.rst for all changes and api.rst for new API
    • [x] reverts #2021

    Let's see if this passes....

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/3805/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    539059754 MDExOlB1bGxSZXF1ZXN0MzU0MDk5Mzkz 3635 Fix/quantile wrong errmsg mathause 10194086 closed 0     2 2019-12-17T13:16:40Z 2021-10-18T14:06:13Z 2019-12-17T13:50:06Z MEMBER   0 pydata/xarray/pulls/3635
    • [x] Closes #3634
    • [x] Tests added
    • [x] Passes black . && mypy . && flake8
    • [x] Fully documented, including whats-new.rst for all changes and api.rst for new API

    np.nanquantile was added in numpy 1.15.0, the current minimum requirement for numpy is 1.14.0, therefore we have to test this ourselves.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/3635/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    928539812 MDExOlB1bGxSZXF1ZXN0Njc2NTI5NjQ4 5522 typing for numpy 1.21 mathause 10194086 closed 0     2 2021-06-23T18:40:28Z 2021-10-18T14:05:47Z 2021-06-24T08:58:07Z MEMBER   0 pydata/xarray/pulls/5522
    • [x] Closes #5517
    • [x] Passes pre-commit run --all-files

    The minimal typing for numpy 1.21. As always I am by no means a typing specialist.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/5522/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    235542564 MDExOlB1bGxSZXF1ZXN0MTI1MzU1MTI5 1451 inconsistent time.units fmt in encode_cf_datetime mathause 10194086 closed 0     7 2017-06-13T12:49:31Z 2021-06-24T08:45:18Z 2021-06-23T16:14:27Z MEMBER   0 pydata/xarray/pulls/1451
    • do not change user-specified units
    • always format infered units as 'YYYY-mmmm-ddTHH:MM:SS'

    This is my naïve approach.

    • [ ] Closes #1449
    • [ ] Tests added / passed
    • [ ] Passes git diff upstream/master | flake8 --diff
    • [ ] Fully documented, including whats-new.rst for all changes and api.rst for new API
    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/1451/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    913958248 MDExOlB1bGxSZXF1ZXN0NjYzOTE2NDQw 5451 Silence some test warnings mathause 10194086 closed 0     1 2021-06-07T21:12:50Z 2021-06-09T17:55:48Z 2021-06-09T17:27:21Z MEMBER   0 pydata/xarray/pulls/5451

    Silences a number of warnings that accumulated in our test suite (c.f. #3266). The changes are mostly unrelated but small.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/5451/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    913916040 MDExOlB1bGxSZXF1ZXN0NjYzODgwMjI1 5450 plt.gca() no longer accepts kwargs mathause 10194086 closed 0     0 2021-06-07T20:10:57Z 2021-06-09T17:27:02Z 2021-06-09T17:26:58Z MEMBER   0 pydata/xarray/pulls/5450

    matplotlib warns: Calling gca() with keyword arguments was deprecated in Matplotlib 3.4. Starting two minor releases later, gca() will take no keyword arguments. The gca() function should only be used to get the current axes, or if no axes exist, create new axes with default keyword arguments. To create a new axes with non-default arguments, use plt.axes() or plt.subplot().

    This only uses plt.gca() if there are active axes, else it calls plt.axes(**kwargs). Note that this can silently ignore some arguments. However, that this is already the case.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/5450/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    913830070 MDExOlB1bGxSZXF1ZXN0NjYzODA1MDQy 5449 fix dask meta and output_dtypes error mathause 10194086 closed 0     8 2021-06-07T18:25:20Z 2021-06-08T07:51:50Z 2021-06-07T21:05:24Z MEMBER   0 pydata/xarray/pulls/5449
    • [x] Closes #5444

    This was changed in dask/dask#7669. Looks like they did not deprecate this behavior (i.e. passing both meta and output_dtypes). I'd suggest to follow dask's example here and not add a deprecation cycle. Thoughts?

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/5449/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    834641104 MDU6SXNzdWU4MzQ2NDExMDQ= 5053 ImportError: module 'xarray.backends.*' has no attribute '*_backend' mathause 10194086 closed 0     3 2021-03-18T10:44:33Z 2021-04-25T16:23:20Z 2021-04-25T16:23:19Z MEMBER      

    What happened:

    I could not open the test dataset on master. It's a bit strange that this is not picked up by the tests, so probably something to do with the environment I have (I just updated all packages).

    @alexamici @aurghs does that tell you anything?

    I can also try to figure it out.

    Minimal Complete Verifiable Example:

    calling open_dataset with "" is enough to trigger the error:

    python import xarray as xr air = xr.open_dataset("")

    Anything else we need to know?:

    And the traceback:

    ```python-traceback --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) ~/conda/envs/xarray_dev/lib/python3.8/site-packages/pkg_resources/__init__.py in resolve(self) 2479 try: -> 2480 return functools.reduce(getattr, self.attrs, module) 2481 except AttributeError as exc: AttributeError: module 'xarray.backends.cfgrib_' has no attribute 'cfgrib_backend' The above exception was the direct cause of the following exception: ImportError Traceback (most recent call last) <ipython-input-2-16bed41155fa> in <module> ----> 1 air = xr.tutorial.open_dataset("air_temperature") ~/code/xarray/xarray/tutorial.py in open_dataset(name, cache, cache_dir, github_url, branch, **kws) 93 raise OSError(msg) 94 ---> 95 ds = _open_dataset(localfile, **kws) 96 97 if not cache: ~/code/xarray/xarray/backends/api.py in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, backend_kwargs, *args, **kwargs) 491 492 if engine is None: --> 493 engine = plugins.guess_engine(filename_or_obj) 494 495 backend = plugins.get_backend(engine) ~/code/xarray/xarray/backends/plugins.py in guess_engine(store_spec) 99 100 def guess_engine(store_spec): --> 101 engines = list_engines() 102 103 for engine, backend in engines.items(): ~/code/xarray/xarray/backends/plugins.py in list_engines() 95 def list_engines(): 96 pkg_entrypoints = pkg_resources.iter_entry_points("xarray.backends") ---> 97 return build_engines(pkg_entrypoints) 98 99 ~/code/xarray/xarray/backends/plugins.py in build_engines(pkg_entrypoints) 82 backend_entrypoints = BACKEND_ENTRYPOINTS.copy() 83 pkg_entrypoints = remove_duplicates(pkg_entrypoints) ---> 84 external_backend_entrypoints = backends_dict_from_pkg(pkg_entrypoints) 85 backend_entrypoints.update(external_backend_entrypoints) 86 backend_entrypoints = sort_backends(backend_entrypoints) ~/code/xarray/xarray/backends/plugins.py in backends_dict_from_pkg(pkg_entrypoints) 56 for pkg_ep in pkg_entrypoints: 57 name = pkg_ep.name ---> 58 backend = pkg_ep.load() 59 backend_entrypoints[name] = backend 60 return backend_entrypoints ~/conda/envs/xarray_dev/lib/python3.8/site-packages/pkg_resources/__init__.py in load(self, require, *args, **kwargs) 2470 if require: 2471 self.require(*args, **kwargs) -> 2472 return self.resolve() 2473 2474 def resolve(self): ~/conda/envs/xarray_dev/lib/python3.8/site-packages/pkg_resources/__init__.py in resolve(self) 2480 return functools.reduce(getattr, self.attrs, module) 2481 except AttributeError as exc: -> 2482 raise ImportError(str(exc)) from exc 2483 2484 def require(self, env=None, installer=None): ImportError: module 'xarray.backends.cfgrib_' has no attribute 'cfgrib_backend' ```

    Environment:

    Output of <tt>xr.show_versions()</tt> ``` INSTALLED VERSIONS ------------------ commit: a6f51c680f4e4c3ed5101b9c1111f0b94d28a781 python: 3.8.6 | packaged by conda-forge | (default, Jan 25 2021, 23:21:18) [GCC 9.3.0] python-bits: 64 OS: Linux OS-release: 5.4.0-67-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.16.2.dev111+g0d93c4f9.d20201219 pandas: 1.2.3 numpy: 1.20.1 scipy: 1.6.1 netCDF4: 1.5.6 pydap: installed h5netcdf: 0.10.0 h5py: 3.1.0 Nio: None zarr: 2.6.1 cftime: 1.4.1 nc_time_axis: 1.2.0 PseudoNetCDF: installed rasterio: 1.2.1 cfgrib: 0.9.8.5 iris: 2.4.0 bottleneck: 1.3.2 dask: 2021.03.0 distributed: 2021.03.0 matplotlib: 3.3.4 cartopy: 0.18.0 seaborn: 0.11.1 numbagg: installed pint: 0.16.1 setuptools: 49.6.0.post20210108 pip: 21.0.1 conda: None pytest: 6.2.2 IPython: 7.21.0 sphinx: None ```

    and my conda list:

    ``` # packages in environment at /home/mathause/conda/envs/xarray_dev: # # Name Version Build Channel _libgcc_mutex 0.1 conda_forge conda-forge _openmp_mutex 4.5 1_gnu conda-forge affine 2.3.0 py_0 conda-forge antlr-python-runtime 4.7.2 py38h578d9bd_1002 conda-forge apipkg 1.5 py_0 conda-forge appdirs 1.4.4 pyh9f0ad1d_0 conda-forge asciitree 0.3.3 py_2 conda-forge attrs 20.3.0 pyhd3deb0d_0 conda-forge backcall 0.2.0 pyh9f0ad1d_0 conda-forge backports 1.0 py_2 conda-forge backports.functools_lru_cache 1.6.1 py_0 conda-forge beautifulsoup4 4.9.3 pyhb0f4dca_0 conda-forge black 20.8b1 py_1 conda-forge bokeh 2.3.0 py38h578d9bd_0 conda-forge boost-cpp 1.72.0 h9d3c048_4 conda-forge boto3 1.17.30 pyhd8ed1ab_0 conda-forge botocore 1.20.30 pyhd8ed1ab_0 conda-forge bottleneck 1.3.2 py38h5c078b8_3 conda-forge brotlipy 0.7.0 py38h497a2fe_1001 conda-forge bzip2 1.0.8 h7f98852_4 conda-forge c-ares 1.17.1 h7f98852_1 conda-forge ca-certificates 2020.12.5 ha878542_0 conda-forge cached-property 1.5.2 hd8ed1ab_1 conda-forge cached_property 1.5.2 pyha770c72_1 conda-forge cairo 1.16.0 h7979940_1007 conda-forge cartopy 0.18.0 py38hab71064_13 conda-forge cdat_info 8.2.1 pyh9f0ad1d_1 conda-forge cdms2 3.1.5 pypi_0 pypi cdtime 3.1.4 py38h49bcaf2_2 conda-forge certifi 2020.12.5 py38h578d9bd_1 conda-forge cf-units 2.1.4 py38hab2c0dc_2 conda-forge cffi 1.14.5 py38ha65f79e_0 conda-forge cfgrib 0.9.8.5 pyhd8ed1ab_0 conda-forge cfgv 3.2.0 py_0 conda-forge cfitsio 3.470 hb418390_7 conda-forge cftime 1.4.1 py38h5c078b8_0 conda-forge chardet 4.0.0 py38h578d9bd_1 conda-forge click 7.1.2 pyh9f0ad1d_0 conda-forge click-plugins 1.1.1 py_0 conda-forge cligj 0.7.1 pyhd8ed1ab_0 conda-forge cloudpickle 1.6.0 py_0 conda-forge coverage 5.5 py38h497a2fe_0 conda-forge coveralls 3.0.1 pyhd8ed1ab_0 conda-forge cryptography 3.4.6 py38ha5dfef3_0 conda-forge curl 7.75.0 h979ede3_0 conda-forge cycler 0.10.0 py_2 conda-forge cytoolz 0.11.0 py38h497a2fe_3 conda-forge dask 2021.3.0 pyhd8ed1ab_0 conda-forge dask-core 2021.3.0 pyhd8ed1ab_0 conda-forge dataclasses 0.8 pyhc8e2a94_1 conda-forge dbus 1.13.6 hfdff14a_1 conda-forge decorator 4.4.2 py_0 conda-forge distarray 2.12.2 py_1 conda-forge distlib 0.3.1 pyh9f0ad1d_0 conda-forge distributed 2021.3.0 py38h578d9bd_0 conda-forge docopt 0.6.2 py_1 conda-forge eccodes 2.20.0 ha0e6eb6_0 conda-forge editdistance 0.5.3 py38h709712a_3 conda-forge esmf 8.0.1 mpi_mpich_h3cbecb6_102 conda-forge esmpy 8.0.1 mpi_mpich_py38h6f0bf2d_102 conda-forge execnet 1.8.0 pyh44b312d_0 conda-forge expat 2.2.10 h9c3ff4c_0 conda-forge fasteners 0.14.1 py_3 conda-forge filelock 3.0.12 pyh9f0ad1d_0 conda-forge flake8 3.9.0 pyhd8ed1ab_0 conda-forge fontconfig 2.13.1 hba837de_1004 conda-forge freetype 2.10.4 h0708190_1 conda-forge freexl 1.0.6 h7f98852_0 conda-forge fsspec 0.8.7 pyhd8ed1ab_0 conda-forge future 0.18.2 py38h578d9bd_3 conda-forge g2clib 1.6.0 hf3f1b0b_9 conda-forge geos 3.9.1 h9c3ff4c_2 conda-forge geotiff 1.6.0 h11d48b3_4 conda-forge gettext 0.19.8.1 h0b5b191_1005 conda-forge giflib 5.2.1 h516909a_2 conda-forge glib 2.66.7 h9c3ff4c_1 conda-forge glib-tools 2.66.7 h9c3ff4c_1 conda-forge gprof2dot 2019.11.30 py_0 conda-forge gst-plugins-base 1.18.4 h29181c9_0 conda-forge gstreamer 1.18.4 h76c114f_0 conda-forge h5netcdf 0.10.0 pyhd8ed1ab_0 conda-forge h5py 3.1.0 nompi_py38hafa665b_100 conda-forge hdf4 4.2.13 h10796ff_1004 conda-forge hdf5 1.10.6 mpi_mpich_h996c276_1014 conda-forge heapdict 1.0.1 py_0 conda-forge hypothesis 6.8.1 pyhd8ed1ab_0 conda-forge icu 68.1 h58526e2_0 conda-forge identify 2.1.3 pyhd8ed1ab_0 conda-forge idna 2.10 pyh9f0ad1d_0 conda-forge importlib-metadata 3.7.3 py38h578d9bd_0 conda-forge importlib_metadata 3.7.3 hd8ed1ab_0 conda-forge importlib_resources 5.1.2 py38h578d9bd_0 conda-forge iniconfig 1.1.1 pyh9f0ad1d_0 conda-forge ipython 7.21.0 py38h81c977d_0 conda-forge ipython_genutils 0.2.0 py_1 conda-forge iris 2.4.0 py38h578d9bd_1 conda-forge isort 5.7.0 pyhd8ed1ab_0 conda-forge jasper 1.900.1 h07fcdf6_1006 conda-forge jedi 0.18.0 py38h578d9bd_2 conda-forge jinja2 2.11.3 pyh44b312d_0 conda-forge jmespath 0.10.0 pyh9f0ad1d_0 conda-forge jpeg 9d h516909a_0 conda-forge json-c 0.15 h98cffda_0 conda-forge jsonschema 3.2.0 py38h32f6830_1 conda-forge jupyter_core 4.7.1 py38h578d9bd_0 conda-forge kealib 1.4.14 hcc255d8_2 conda-forge kiwisolver 1.3.1 py38h1fd1430_1 conda-forge krb5 1.17.2 h926e7f8_0 conda-forge lazy-object-proxy 1.5.2 py38h497a2fe_1 conda-forge lcms2 2.12 hddcbb42_0 conda-forge ld_impl_linux-64 2.35.1 hea4e1c9_2 conda-forge libaec 1.0.4 he1b5a44_1 conda-forge libblas 3.8.0 17_openblas conda-forge libcblas 3.8.0 17_openblas conda-forge libcdms 3.1.2 h981a4fd_113 conda-forge libcf 1.0.3 py38h88b7cc0_109 conda-forge libclang 11.1.0 default_ha53f305_0 conda-forge libcst 0.3.17 py38h578d9bd_0 conda-forge libcurl 7.75.0 hc4aaa36_0 conda-forge libdap4 3.20.6 hd7c4107_1 conda-forge libdrs 3.1.2 h7918d09_113 conda-forge libdrs_f 3.1.2 h5026c31_111 conda-forge libedit 3.1.20191231 he28a2e2_2 conda-forge libev 4.33 h516909a_1 conda-forge libevent 2.1.10 hcdb4288_3 conda-forge libffi 3.3 h58526e2_2 conda-forge libgcc-ng 9.3.0 h2828fa1_18 conda-forge libgdal 3.2.1 h38ff51b_7 conda-forge libgfortran-ng 9.3.0 hff62375_18 conda-forge libgfortran5 9.3.0 hff62375_18 conda-forge libglib 2.66.7 h3e27bee_1 conda-forge libgomp 9.3.0 h2828fa1_18 conda-forge libiconv 1.16 h516909a_0 conda-forge libkml 1.3.0 hd79254b_1012 conda-forge liblapack 3.8.0 17_openblas conda-forge libllvm10 10.0.1 he513fc3_3 conda-forge libllvm11 11.1.0 hf817b99_0 conda-forge libnetcdf 4.7.4 mpi_mpich_hdef422e_7 conda-forge libnghttp2 1.43.0 h812cca2_0 conda-forge libopenblas 0.3.10 pthreads_h4812303_5 conda-forge libpng 1.6.37 hed695b0_2 conda-forge libpq 13.1 hfd2b0eb_2 conda-forge librttopo 1.1.0 h1185371_6 conda-forge libspatialite 5.0.1 he52d314_3 conda-forge libssh2 1.9.0 ha56f1ee_6 conda-forge libstdcxx-ng 9.3.0 h6de172a_18 conda-forge libtiff 4.2.0 hdc55705_0 conda-forge libuuid 2.32.1 h14c3975_1000 conda-forge libwebp-base 1.2.0 h7f98852_2 conda-forge libxcb 1.13 h7f98852_1003 conda-forge libxkbcommon 1.0.3 he3ba5ed_0 conda-forge libxml2 2.9.10 h72842e0_3 conda-forge libxslt 1.1.33 h15afd5d_2 conda-forge line_profiler 3.1.0 py38h82cb98a_1 conda-forge llvmlite 0.36.0 py38h4630a5e_0 conda-forge locket 0.2.0 py_2 conda-forge lxml 4.6.2 py38hf1fe3a4_1 conda-forge lz4-c 1.9.3 h9c3ff4c_0 conda-forge markupsafe 1.1.1 py38h497a2fe_3 conda-forge matplotlib 3.3.4 py38h578d9bd_0 conda-forge matplotlib-base 3.3.4 py38h0efea84_0 conda-forge mccabe 0.6.1 py_1 conda-forge mechanicalsoup 1.0.0 pyhd8ed1ab_0 conda-forge monkeytype 20.5.0 pyh516909a_0 conda-forge monotonic 1.5 py_0 conda-forge more-itertools 8.7.0 pyhd8ed1ab_0 conda-forge mpi 1.0 mpich conda-forge mpi4py 3.0.3 py38he865349_5 conda-forge mpich 3.4.1 h846660c_104 conda-forge msgpack-python 1.0.2 py38h1fd1430_1 conda-forge mypy 0.812 pyhd8ed1ab_0 conda-forge mypy_extensions 0.4.3 py38h578d9bd_3 conda-forge mysql-common 8.0.23 ha770c72_1 conda-forge mysql-libs 8.0.23 h935591d_1 conda-forge nbformat 5.1.2 pyhd8ed1ab_1 conda-forge nc-time-axis 1.2.0 py_1 conda-forge ncurses 6.2 h58526e2_4 conda-forge netcdf-fortran 4.5.3 mpi_mpich_h7ad8bfe_1 conda-forge netcdf4 1.5.6 nompi_py38h1cdf482_100 conda-forge nodeenv 1.5.0 pyh9f0ad1d_0 conda-forge nspr 4.30 h9c3ff4c_0 conda-forge nss 3.62 hb5efdd6_0 conda-forge numba 0.53.0 py38h5e62926_1 conda-forge numbagg 0.1 pypi_0 pypi numcodecs 0.7.3 py38h709712a_0 conda-forge numpy 1.20.1 py38h18fd61f_0 conda-forge olefile 0.46 pyh9f0ad1d_1 conda-forge openblas 0.3.10 pthreads_h04b7a96_5 conda-forge openjpeg 2.4.0 hf7af979_0 conda-forge openssl 1.1.1j h7f98852_0 conda-forge packaging 20.9 pyh44b312d_0 conda-forge pandas 1.2.3 py38h51da96c_0 conda-forge parso 0.8.1 pyhd8ed1ab_0 conda-forge partd 1.1.0 py_0 conda-forge pathspec 0.8.1 pyhd3deb0d_0 conda-forge patsy 0.5.1 py_0 conda-forge pcre 8.44 he1b5a44_0 conda-forge pexpect 4.8.0 py38h32f6830_1 conda-forge pickleshare 0.7.5 py38h32f6830_1002 conda-forge pillow 8.1.2 py38ha0e1e83_0 conda-forge pint 0.16.1 py_0 conda-forge pip 21.0.1 pyhd8ed1ab_0 conda-forge pixman 0.40.0 h36c2ea0_0 conda-forge pluggy 0.13.1 py38h578d9bd_4 conda-forge poppler 0.89.0 h2de54a5_5 conda-forge poppler-data 0.4.10 0 conda-forge postgresql 13.1 h6303168_2 conda-forge pre-commit 2.11.1 py38h578d9bd_0 conda-forge proj 7.2.0 h277dcde_2 conda-forge prompt-toolkit 3.0.17 pyha770c72_0 conda-forge pseudonetcdf 3.1.0 py_1 conda-forge psutil 5.8.0 py38h497a2fe_1 conda-forge pthread-stubs 0.4 h36c2ea0_1001 conda-forge ptyprocess 0.7.0 pyhd3deb0d_0 conda-forge py 1.10.0 pyhd3deb0d_0 conda-forge pycodestyle 2.7.0 pyhd8ed1ab_0 conda-forge pycparser 2.20 pyh9f0ad1d_2 conda-forge pydap 3.2.2 py38_1000 conda-forge pyflakes 2.3.0 pyhd8ed1ab_0 conda-forge pygments 2.8.1 pyhd8ed1ab_0 conda-forge pyke 1.1.1 py38h578d9bd_1003 conda-forge pyopenssl 20.0.1 pyhd8ed1ab_0 conda-forge pyparsing 2.4.7 pyh9f0ad1d_0 conda-forge pyqt 5.12.3 py38h578d9bd_7 conda-forge pyqt-impl 5.12.3 py38h7400c14_7 conda-forge pyqt5-sip 4.19.18 py38h709712a_7 conda-forge pyqtchart 5.12 py38h7400c14_7 conda-forge pyqtwebengine 5.12.1 py38h7400c14_7 conda-forge pyrsistent 0.17.3 py38h497a2fe_2 conda-forge pyshp 2.1.3 pyh44b312d_0 conda-forge pysocks 1.7.1 py38h578d9bd_3 conda-forge pytest 6.2.2 py38h578d9bd_0 conda-forge pytest-cov 2.11.1 pyh44b312d_0 conda-forge pytest-env 0.6.2 py_0 conda-forge pytest-forked 1.3.0 pyhd3deb0d_0 conda-forge pytest-profiling 1.7.0 py_1 conda-forge pytest-xdist 2.2.1 pyhd8ed1ab_0 conda-forge python 3.8.6 hffdb5ce_5_cpython conda-forge python-dateutil 2.8.1 py_0 conda-forge python-xxhash 2.0.0 py38h497a2fe_1 conda-forge python_abi 3.8 1_cp38 conda-forge pytz 2021.1 pyhd8ed1ab_0 conda-forge pyyaml 5.4.1 py38h497a2fe_0 conda-forge qt 5.12.9 hda022c4_4 conda-forge rasterio 1.2.1 py38h57accd2_2 conda-forge readline 8.0 he28a2e2_2 conda-forge regex 2020.11.13 py38h497a2fe_1 conda-forge regrid2 3.1.5 pypi_0 pypi requests 2.25.1 pyhd3deb0d_0 conda-forge s3transfer 0.3.4 pyhd8ed1ab_0 conda-forge scipy 1.6.1 py38hb2138dd_0 conda-forge seaborn 0.11.1 ha770c72_0 conda-forge seaborn-base 0.11.1 pyhd8ed1ab_1 conda-forge setuptools 49.6.0 py38h578d9bd_3 conda-forge shapely 1.7.1 py38h4fc1155_4 conda-forge six 1.15.0 pyh9f0ad1d_0 conda-forge snuggs 1.4.7 py_0 conda-forge sortedcontainers 2.3.0 pyhd8ed1ab_0 conda-forge soupsieve 2.0.1 py38h32f6830_0 conda-forge sparse 0.11.2 py_0 conda-forge sqlite 3.34.0 h74cdb3f_0 conda-forge statsmodels 0.12.2 py38h5c078b8_0 conda-forge tblib 1.6.0 py_0 conda-forge tiledb 2.2.5 h91fcb0e_0 conda-forge tk 8.6.10 hed695b0_1 conda-forge toml 0.10.2 pyhd8ed1ab_0 conda-forge toolz 0.11.1 py_0 conda-forge tornado 6.1 py38h497a2fe_1 conda-forge traitlets 5.0.5 py_0 conda-forge typed-ast 1.4.2 py38h497a2fe_0 conda-forge typing_extensions 3.7.4.3 py_0 conda-forge typing_inspect 0.6.0 pyh9f0ad1d_0 conda-forge tzcode 2021a h7f98852_1 conda-forge tzdata 2021a he74cb21_0 conda-forge udunits2 2.2.27.27 h360fe7b_0 conda-forge urllib3 1.26.4 pyhd8ed1ab_0 conda-forge virtualenv 20.4.3 py38h578d9bd_0 conda-forge wcwidth 0.2.5 pyh9f0ad1d_2 conda-forge webob 1.8.6 py_0 conda-forge wheel 0.36.2 pyhd3deb0d_0 conda-forge xarray 0.16.2.dev111+g0d93c4f9.d20201219 dev_0 <develop> xerces-c 3.2.3 h9d8b166_2 conda-forge xorg-kbproto 1.0.7 h14c3975_1002 conda-forge xorg-libice 1.0.10 h516909a_0 conda-forge xorg-libsm 1.2.3 hd9c2040_1000 conda-forge xorg-libx11 1.7.0 h36c2ea0_0 conda-forge xorg-libxau 1.0.9 h14c3975_0 conda-forge xorg-libxdmcp 1.1.3 h516909a_0 conda-forge xorg-libxext 1.3.4 h7f98852_1 conda-forge xorg-libxrender 0.9.10 h7f98852_1003 conda-forge xorg-renderproto 0.11.1 h14c3975_1002 conda-forge xorg-xextproto 7.3.0 h14c3975_1002 conda-forge xorg-xproto 7.0.31 h14c3975_1007 conda-forge xxhash 0.8.0 h7f98852_3 conda-forge xz 5.2.5 h516909a_1 conda-forge yaml 0.2.5 h516909a_0 conda-forge zarr 2.6.1 pyhd8ed1ab_0 conda-forge zict 2.0.0 py_0 conda-forge zipp 3.4.1 pyhd8ed1ab_0 conda-forge zlib 1.2.11 h516909a_1010 conda-forge zstd 1.4.9 ha95c52a_0 conda-forge ```

    edit: added the traceback

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/5053/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    771482993 MDExOlB1bGxSZXF1ZXN0NTQyOTk3MjQx 4716 .coveragerc omit: wildcards mathause 10194086 closed 0     2 2020-12-20T00:26:59Z 2021-04-19T20:34:07Z 2020-12-20T00:48:43Z MEMBER   0 pydata/xarray/pulls/4716
    • [x] Closes #4693
    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4716/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    845248555 MDExOlB1bGxSZXF1ZXN0NjA0NDI2MTYx 5096 type: ignore - use error codes mathause 10194086 closed 0     2 2021-03-30T20:53:50Z 2021-04-01T10:23:56Z 2021-04-01T10:23:53Z MEMBER   0 pydata/xarray/pulls/5096
    • [x] Passes pre-commit run --all-files
    • [x] User visible changes (including notable bug fixes) are documented in whats-new.rst

    Adds error codes to all # type: ignore comments. mypy should raise if a different type of error is encountered. Also enable showing the error code for typing errors. See: mypy: displaying-error-codes. Also remove some # type: ignore that are no longer necessary.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/5096/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    843217462 MDExOlB1bGxSZXF1ZXN0NjAyNjMyMjgw 5090 ensure combine_by_coords raises on different types mathause 10194086 closed 0     3 2021-03-29T10:13:34Z 2021-03-31T15:53:23Z 2021-03-31T13:36:44Z MEMBER   0 pydata/xarray/pulls/5090
    • [x] Part of #5077
    • [x] Tests added
    • [x] Passes pre-commit run --all-files
    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/5090/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    308039063 MDExOlB1bGxSZXF1ZXN0MTc3MDc3MTU5 2011 rolling: periodic mathause 10194086 closed 0     9 2018-03-23T13:57:25Z 2021-03-30T15:08:22Z 2021-03-30T15:08:18Z MEMBER   0 pydata/xarray/pulls/2011
    • [x] Closes #2007
    • [ ] Tests added (for all bug fixes or enhancements)
    • [ ] Tests passed (for all non-documentation changes)
    • [ ] Fully documented, including whats-new.rst for all changes and api.rst for new API

    Ok, this was easier to do than initially thought, we can use np.pad(a, pads, mode='wrap') in nputils.rolling_window. However, I'm not sure if that is enough already<sup>*</sup>.

    I added an initial test, but could use some pointers where else you want this to be tested.

    Questions: * is fill_value='periodic' a good api? * should the fill_value keyvalue be ported to rolling? * should this also be mentioned in the docs for rolling (I only learned about rolling.construct yesterday)


    <sup>*</sup>rolling is present incore/dataset.py, core/dataarray.py, core/variable.py, core/rolling.py, core/dask_array_ops.py, core/nputils.py, core/ops.py, core/common.py, core/missing.py, and core/duck_array_ops.py that can be a bit daunting...

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/2011/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    819884612 MDExOlB1bGxSZXF1ZXN0NTgyOTE5ODUy 4982 pin netCDF4=1.5.3 in min-all-deps mathause 10194086 closed 0     1 2021-03-02T10:36:18Z 2021-03-08T09:10:20Z 2021-03-08T00:20:38Z MEMBER   0 pydata/xarray/pulls/4982
    • [x] Closes #4970

    The clean thing here would be to update min_deps_check.py so it works properly for this case. I am not sure it's really worth it.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4982/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    817951965 MDU6SXNzdWU4MTc5NTE5NjU= 4970 minimum version and non-semantic versioning (netCDF4) mathause 10194086 closed 0     1 2021-02-27T15:33:48Z 2021-03-08T00:20:38Z 2021-03-08T00:20:38Z MEMBER      

    We currently pin netCDF4 to version 1.5. However, I think netCDF4 does not really follow semantic versioning, e.g. python 2 support was dropped in version 1.5.6. So they may actually be doing something like 1.major.minor[.patch] - I asked about their versioning scheme in Unidata/netcdf4-python#1090.

    So I wonder if we would need to pin netCDF to version to version 1.5.4.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4970/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    814813503 MDExOlB1bGxSZXF1ZXN0NTc4NzQwMzM2 4946 Upstream CI: limit runtime mathause 10194086 closed 0     5 2021-02-23T20:40:34Z 2021-02-24T14:37:04Z 2021-02-23T22:37:07Z MEMBER   0 pydata/xarray/pulls/4946
    • xref #4945

    Try to limit the time of "CI Upstream" to avoid a silent failure.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4946/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    814806676 MDU6SXNzdWU4MTQ4MDY2NzY= 4945 Upstream CI failing silently mathause 10194086 closed 0     1 2021-02-23T20:30:29Z 2021-02-24T08:14:00Z 2021-02-24T08:14:00Z MEMBER      

    The last 5 days our Upstream CI failed silently with a timeout after 6h:

    https://github.com/pydata/xarray/actions/workflows/upstream-dev-ci.yaml?query=branch%3Amaster+event%3Aschedule

    This was probably caused by #4934. As mentioned in dask/dask#4934 this is probably dask/dask#6738 which was merged 5 days ago.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4945/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    803049855 MDExOlB1bGxSZXF1ZXN0NTY5MDQ0NzMy 4878 typing for numpy 1.20 mathause 10194086 closed 0     2 2021-02-07T20:32:27Z 2021-02-23T20:52:50Z 2021-02-23T20:52:47Z MEMBER   0 pydata/xarray/pulls/4878

    numpy v1.20.0 introduced type hints which leads to some mypy errors in xarray. This is the minimum set of changes to make mypy happy again. I tried to avoid #type: ignore and Any but in some instances I think it was not worth it.

    I am sure there is much more fun to be had with numpy typing ;-)

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4878/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    812214755 MDExOlB1bGxSZXF1ZXN0NTc2NjE2MzM1 4929 CI: run mypy in full env mathause 10194086 closed 0     3 2021-02-19T17:47:28Z 2021-02-22T16:42:09Z 2021-02-22T16:33:51Z MEMBER   0 pydata/xarray/pulls/4929
    • [x] Closes #4881
    • [x] Tests added
    • [x] Passes pre-commit run --all-files
    • [ ] User visible changes (including notable bug fixes) are documented in whats-new.rst

    I only added one run for py3.8 latest. To be entirely sure we could also check the typing py37-min-all-deps but it feels like overkill...


    Ok, looks good - the failure is expected - see #4878.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4929/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    803402841 MDU6SXNzdWU4MDM0MDI4NDE= 4881 check mypy at the end of some CI runs? mathause 10194086 closed 0     2 2021-02-08T10:04:44Z 2021-02-22T16:33:50Z 2021-02-22T16:33:50Z MEMBER      

    We currently run mypy in the pre-commit hooks CI. However, this is done in an environment where no dependencies are installed. Therefore we missed the errors that pop up when running mypy with numpy 1.20 installed. (Please correct my if I misunderstood this). Should we add a new step to our CI and run mypy?

    I think we should at least add this to ubuntu-latest py3.8. For more complete checks we could also go for ubuntu-latest py37-min-all-deps and upstream-dev.

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4881/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue
    811379942 MDExOlB1bGxSZXF1ZXN0NTc1OTE3NjYz 4923 [skip-ci] doc: fix pynio warning mathause 10194086 closed 0     1 2021-02-18T19:09:00Z 2021-02-18T19:23:23Z 2021-02-18T19:23:20Z MEMBER   0 pydata/xarray/pulls/4923

    Small doc fix, see http://xarray.pydata.org/en/stable/io.html#formats-supported-by-pynio (the ..note:: did not get picked up)

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4923/reactions",
        "total_count": 0,
        "+1": 0,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
        xarray 13221727 pull
    739008382 MDU6SXNzdWU3MzkwMDgzODI= 4570 fix compatibility with h5py version 3 and unpin tests mathause 10194086 closed 0     6 2020-11-09T13:00:01Z 2021-02-17T08:41:20Z 2021-02-17T08:41:20Z MEMBER      

    h5py version 3.1 broke our tests. I pinned it to version 2.10 in #4569. We should therefore

    • fix the issues
    • unpin h5py again

    The failures could be related to a change how strings are read: https://docs.h5py.org/en/latest/strings.html I am not sure if this has to be fixed in xarray or in h5necdf. I'd be happy if someone else took this one.

    Failed tests:

    ``` FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_zero_dimensional_variable FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_write_store - As... FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_roundtrip_test_data FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_load - Assertion... FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_dataset_compute FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_roundtrip_object_dtype FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_roundtrip_string_data FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_orthogonal_indexing FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_vectorized_indexing FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_isel_dataarray FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_array_type_after_indexing FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_append_write - A... FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_append_overwrite_values FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_write_groups - A... FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_encoding_kwarg_vlen_string FAILED xarray/tests/test_backends.py::TestH5NetCDFData::test_compression_encoding FAILED xarray/tests/test_backends.py::TestH5NetCDFFileObject::test_zero_dimensional_variable FAILED xarray/tests/test_backends.py::TestH5NetCDFFileObject::test_write_store FAILED xarray/tests/test_backends.py::TestH5NetCDFFileObject::test_roundtrip_test_data FAILED xarray/tests/test_backends.py::TestH5NetCDFFileObject::test_load - Ass... FAILED xarray/tests/test_backends.py::TestH5NetCDFFileObject::test_dataset_compute FAILED xarray/tests/test_backends.py::TestH5NetCDFFileObject::test_roundtrip_object_dtype FAILED xarray/tests/test_backends.py::TestH5NetCDFViaDaskData::test_encoding_kwarg_vlen_string FAILED xarray/tests/test_backends.py::TestH5NetCDFViaDaskData::test_compression_encoding FAILED xarray/tests/test_distributed.py::test_dask_distributed_netcdf_roundtrip[h5netcdf-NETCDF4] FAILED xarray/tests/test_distributed.py::test_dask_distributed_read_netcdf_integration_test[h5netcdf-NETCDF4] ```

    Example failure:

    ```python traceback

    assert_allclose(original, computed) E AssertionError: Left and right Dataset objects are not close E
    E Differing coordinates: E L * dim3 (dim3) <U1 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' E R * dim3 (dim3) object b'a' b'b' b'c' b'd' b'e' b'f' b'g' b'h' b'i' b'j'< ```

    {
        "url": "https://api.github.com/repos/pydata/xarray/issues/4570/reactions",
        "total_count": 1,
        "+1": 1,
        "-1": 0,
        "laugh": 0,
        "hooray": 0,
        "confused": 0,
        "heart": 0,
        "rocket": 0,
        "eyes": 0
    }
      completed xarray 13221727 issue

    Next page

    Advanced export

    JSON shape: default, array, newline-delimited, object

    CSV options:

    CREATE TABLE [issues] (
       [id] INTEGER PRIMARY KEY,
       [node_id] TEXT,
       [number] INTEGER,
       [title] TEXT,
       [user] INTEGER REFERENCES [users]([id]),
       [state] TEXT,
       [locked] INTEGER,
       [assignee] INTEGER REFERENCES [users]([id]),
       [milestone] INTEGER REFERENCES [milestones]([id]),
       [comments] INTEGER,
       [created_at] TEXT,
       [updated_at] TEXT,
       [closed_at] TEXT,
       [author_association] TEXT,
       [active_lock_reason] TEXT,
       [draft] INTEGER,
       [pull_request] TEXT,
       [body] TEXT,
       [reactions] TEXT,
       [performed_via_github_app] TEXT,
       [state_reason] TEXT,
       [repo] INTEGER REFERENCES [repos]([id]),
       [type] TEXT
    );
    CREATE INDEX [idx_issues_repo]
        ON [issues] ([repo]);
    CREATE INDEX [idx_issues_milestone]
        ON [issues] ([milestone]);
    CREATE INDEX [idx_issues_assignee]
        ON [issues] ([assignee]);
    CREATE INDEX [idx_issues_user]
        ON [issues] ([user]);
    Powered by Datasette · Queries took 1681.735ms · About: xarray-datasette