issue_comments
where author_association = "CONTRIBUTOR" sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue >30
- Fixes OS error arising from too many files open 39
- WIP: Zarr backend 30
- Add methods for combining variables of differing dimensionality 29
- Add CRS/projection information to xarray objects 29
- Appending to zarr store 27
- Read grid mapping and bounds as coords 26
- Html repr 25
- Implement interp for interpolating between chunks of data (dask) 23
- support for units 18
- Vectorized lazy indexing 18
- CFTimeIndex Resampling 18
- expand dimension by re-allocating larger arrays with more space "at the end of the corresponding dimension", block copying previously existing data, and autofill newly created entry by a default value (note: alternative to reindex, but much faster for extending large arrays along, for example, the time dimension) 18
- Added PNC backend to xarray 17
- Integration with dask/distributed (xarray backend design) 16
- Sortby 16
- ENH: Scatter plots of one variable vs another 16
- enable internal plotting with cftime datetime 16
- open_mfdataset too many files 15
- Allow concat() to drop/replace duplicate index labels? 15
- Add a filter_by_attrs method to Dataset 14
- Attributes from netCDF4 intialization retained 14
- xarray / vtk integration 14
- New deep copy behavior in 2022.9.0 causes maximum recursion error 14
- dask.async.RuntimeError: NetCDF: HDF error on xarray to_netcdf 13
- ArviZ Dev Xarray Dev Get Together? 13
- Support multiple dimensions in DataArray.argmin() and DataArray.argmax() methods 13
- CFTimeIndex calendar in repr 13
- Allow fsspec URLs in open_(mf)dataset 13
- Allow assigning values to a subset of a dataset 13
- float32 instead of float64 when decoding int16 with scale_factor netcdf var using xarray 12
- …
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1406463669 | https://github.com/pydata/xarray/issues/7377#issuecomment-1406463669 | https://api.github.com/repos/pydata/xarray/issues/7377 | IC_kwDOAMm_X85T1O61 | maawoo 56583917 | 2023-01-27T12:45:10Z | 2024-01-03T08:41:41Z | CONTRIBUTOR | Hi all,
I just created a simple workaround, which might be useful for others: It uses the EDIT: I've updated the code to use numbagg instead of xclim. |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 } |
Aggregating a dimension using the Quantiles method with `skipna=True` is very slow 1497031605 | |
1575677244 | https://github.com/pydata/xarray/pull/7891#issuecomment-1575677244 | https://api.github.com/repos/pydata/xarray/issues/7891 | IC_kwDOAMm_X85d6u08 | mgunyho 20118130 | 2023-06-04T19:08:20Z | 2023-06-04T19:11:44Z | CONTRIBUTOR | Oh no, the doctest failure is because the test is flaky, this was introduced by me in #7821, see here: https://github.com/pydata/xarray/pull/7821#issuecomment-1537142237 and here: https://github.com/pydata/xarray/pull/7821/commits/a0e6659ca01188378f29a35b418d6f9e2b889d2e. I'll submit another patch to fix it soon, although I'm not sure how. If you have any tips to avoid this problem, let me know. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add errors option to curvefit 1740268634 | |
1575492166 | https://github.com/pydata/xarray/pull/6515#issuecomment-1575492166 | https://api.github.com/repos/pydata/xarray/issues/6515 | IC_kwDOAMm_X85d6BpG | mgunyho 20118130 | 2023-06-04T09:43:50Z | 2023-06-04T09:43:50Z | CONTRIBUTOR | Hi! I would also like to see this implemented, so I rebased this branch and added a test in #7891. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add allow_failures flag to Dataset.curve_fit 1215946244 | |
1574338418 | https://github.com/pydata/xarray/issues/7890#issuecomment-1574338418 | https://api.github.com/repos/pydata/xarray/issues/7890 | IC_kwDOAMm_X85d1n9y | negin513 17344536 | 2023-06-02T21:30:05Z | 2023-06-02T21:30:05Z | CONTRIBUTOR | @dcherian : agreed! But I am afraid it might break other components.
Although numpy seems to be able to handle both tuple and list in |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`xarray.rolling_window` Converts `dims` Argument from Tuple to List Causing Issues for Cupy-Xarray 1738835134 | |
1573764660 | https://github.com/pydata/xarray/pull/7862#issuecomment-1573764660 | https://api.github.com/repos/pydata/xarray/issues/7862 | IC_kwDOAMm_X85dzb40 | tomwhite 85085 | 2023-06-02T13:44:43Z | 2023-06-02T13:44:43Z | CONTRIBUTOR | @kmuehlbauer thanks for adding tests! I'm not sure what the mypy error is either, I'm afraid... |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
CF encoding should preserve vlen dtype for empty arrays 1720045908 | |
1572357330 | https://github.com/pydata/xarray/pull/7877#issuecomment-1572357330 | https://api.github.com/repos/pydata/xarray/issues/7877 | IC_kwDOAMm_X85duETS | dependabot[bot] 49699333 | 2023-06-01T16:21:59Z | 2023-06-01T16:21:59Z | CONTRIBUTOR | OK, I won't notify you again about this release, but will get in touch when a new version is available. If you'd rather skip all updates until the next major or minor version, let me know by commenting If you change your mind, just re-open this PR and I'll resolve any conflicts on it. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Bump mamba-org/provision-with-micromamba from 15 to 16 1730190019 | |
1572174061 | https://github.com/pydata/xarray/pull/7670#issuecomment-1572174061 | https://api.github.com/repos/pydata/xarray/issues/7670 | IC_kwDOAMm_X85dtXjt | malmans2 22245117 | 2023-06-01T14:34:44Z | 2023-06-01T14:34:44Z | CONTRIBUTOR | The cfgrib notebook in the documentation is broken. I guess it's related to this PR. See: https://docs.xarray.dev/en/stable/examples/ERA5-GRIB-example.html |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Delete built-in cfgrib backend 1639732867 | |
1568704895 | https://github.com/pydata/xarray/pull/7876#issuecomment-1568704895 | https://api.github.com/repos/pydata/xarray/issues/7876 | IC_kwDOAMm_X85dgIl_ | tomvothecoder 25624127 | 2023-05-30T16:09:17Z | 2023-05-30T20:59:48Z | CONTRIBUTOR | Thanks you @keewis and @Illviljan! I made comment to deprecate |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
deprecate the `cdms2` conversion methods 1729709527 | |
1567319929 | https://github.com/pydata/xarray/issues/7879#issuecomment-1567319929 | https://api.github.com/repos/pydata/xarray/issues/7879 | IC_kwDOAMm_X85da2d5 | huard 81219 | 2023-05-29T16:15:49Z | 2023-05-29T16:15:49Z | CONTRIBUTOR | There are similar segfaults in an xncml PR: https://github.com/xarray-contrib/xncml/pull/48 Googling around suggest it is related to netCDF not being thread-safe and recent python-netcdf4 releasing the GIL. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
occasional segfaults on CI 1730451312 | |
1563078509 | https://github.com/pydata/xarray/issues/7856#issuecomment-1563078509 | https://api.github.com/repos/pydata/xarray/issues/7856 | IC_kwDOAMm_X85dKq9t | frazane 62377868 | 2023-05-25T15:10:04Z | 2023-05-25T15:19:49Z | CONTRIBUTOR | Same issue here. I installed xarray with conda/mamba (not a dev install). ``` INSTALLED VERSIONS commit: None python: 3.11.3 | packaged by conda-forge | (main, Apr 6 2023, 08:57:19) [GCC 11.3.0] python-bits: 64 OS: Linux OS-release: 3.10.0-1160.42.2.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.14.0 libnetcdf: 4.9.2 xarray: 2023.4.2 pandas: 2.0.1 numpy: 1.24.3 scipy: 1.10.1 netCDF4: 1.6.3 h5netcdf: None h5py: None zarr: 2.14.2 dask: 2023.4.1 distributed: None pip: 23.1.2 IPython: 8.13.1 ``` Edit: downgrading to 2023.4.0 solved the issue. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Unrecognized chunk manager dask - must be one of: [] 1718410975 | |
1562615805 | https://github.com/pydata/xarray/issues/7870#issuecomment-1562615805 | https://api.github.com/repos/pydata/xarray/issues/7870 | IC_kwDOAMm_X85dI5_9 | vhaasteren 3092444 | 2023-05-25T09:52:06Z | 2023-05-25T09:52:06Z | CONTRIBUTOR | Thank you @TomNicholas, that is encouraging to hear. I will wait for @keewis to respond before filing a PR. FWIW, I have tested the modification I suggest in my fork of xarray, and it works well for our purposes. It just generalizes the exception catch. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Name collision with Pulsar Timing package 'PINT' 1722614979 | |
1561328867 | https://github.com/pydata/xarray/issues/5644#issuecomment-1561328867 | https://api.github.com/repos/pydata/xarray/issues/5644 | IC_kwDOAMm_X85dD_zj | malmans2 22245117 | 2023-05-24T15:02:44Z | 2023-05-24T15:02:44Z | CONTRIBUTOR |
Not sure, but I'll take a look! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`polyfit` with weights alters the DataArray in place 955043280 | |
1561308333 | https://github.com/pydata/xarray/pull/7862#issuecomment-1561308333 | https://api.github.com/repos/pydata/xarray/issues/7862 | IC_kwDOAMm_X85dD6yt | tomwhite 85085 | 2023-05-24T14:51:23Z | 2023-05-24T14:51:23Z | CONTRIBUTOR |
Yes - thanks!
The floating point default is preserved if you do e.g. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
CF encoding should preserve vlen dtype for empty arrays 1720045908 | |
1561240314 | https://github.com/pydata/xarray/pull/7862#issuecomment-1561240314 | https://api.github.com/repos/pydata/xarray/issues/7862 | IC_kwDOAMm_X85dDqL6 | tomwhite 85085 | 2023-05-24T14:12:49Z | 2023-05-24T14:12:49Z | CONTRIBUTOR |
The code looks fine, and I get the same result when I run it with this PR. Your fix in https://github.com/kmuehlbauer/xarray/tree/preserve-vlen-string-dtype changes the metadata so it is correctly preserved as I feel less qualified to evaluate the impact of the netcdf4 fix. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
CF encoding should preserve vlen dtype for empty arrays 1720045908 | |
1561143111 | https://github.com/pydata/xarray/pull/7862#issuecomment-1561143111 | https://api.github.com/repos/pydata/xarray/issues/7862 | IC_kwDOAMm_X85dDSdH | tomwhite 85085 | 2023-05-24T13:23:18Z | 2023-05-24T13:23:18Z | CONTRIBUTOR | Thanks for taking a look @kmuehlbauer and for the useful example code. I hadn't considered the netcdf cases, so thanks for pointing those out.
Could netcdf4 do the same special-casing as h5netcdf? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
CF encoding should preserve vlen dtype for empty arrays 1720045908 | |
1561093283 | https://github.com/pydata/xarray/pull/7551#issuecomment-1561093283 | https://api.github.com/repos/pydata/xarray/issues/7551 | IC_kwDOAMm_X85dDGSj | garciampred 99014432 | 2023-05-24T12:54:46Z | 2023-05-24T12:55:08Z | CONTRIBUTOR | This is currently stuck waiting until the problems with the last netcdf-c versions are fixed in a new release. See the issues (https://github.com/pydata/xarray/issues/7388). When they are fixed I will write the tests If I have time. But of course any help and suggestions are welcomed. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Support for the new compression arguments. 1596511582 | |
1559813805 | https://github.com/pydata/xarray/pull/7865#issuecomment-1559813805 | https://api.github.com/repos/pydata/xarray/issues/7865 | IC_kwDOAMm_X85c-N6t | martinfleis 36797143 | 2023-05-23T16:49:00Z | 2023-05-23T16:49:00Z | CONTRIBUTOR |
Seems okay -> https://anaconda.org/scientific-python-nightly-wheels/xarray/files
I've added you. You should be able to generate a token at https://anaconda.org/scientific-python-nightly-wheels/settings/access with Allow write access to the API site and Allow uploads to Standard Python repositories permissions and add the token as a |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Upload nightly wheels to scientific-python-nightly-wheels 1720850091 | |
1559669046 | https://github.com/pydata/xarray/pull/7865#issuecomment-1559669046 | https://api.github.com/repos/pydata/xarray/issues/7865 | IC_kwDOAMm_X85c9qk2 | martinfleis 36797143 | 2023-05-23T15:28:39Z | 2023-05-23T15:28:39Z | CONTRIBUTOR | Do we need to build the wheel in the same way you currently do in https://github.com/pydata/xarray/blob/main/.github/workflows/testpypi-release.yaml? I used the building workflow from the PyPI release but I just noticed that you do it a bit differently when pushing to TestPyPI. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Upload nightly wheels to scientific-python-nightly-wheels 1720850091 | |
1559665998 | https://github.com/pydata/xarray/pull/7865#issuecomment-1559665998 | https://api.github.com/repos/pydata/xarray/issues/7865 | IC_kwDOAMm_X85c9p1O | martinfleis 36797143 | 2023-05-23T15:26:44Z | 2023-05-23T15:26:44Z | CONTRIBUTOR |
We can add as many people as you'd like. They just need an account on anaconda.org. Do you have an account there so I can add you? You can then add other as you'll need. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Upload nightly wheels to scientific-python-nightly-wheels 1720850091 | |
1558263680 | https://github.com/pydata/xarray/issues/7295#issuecomment-1558263680 | https://api.github.com/repos/pydata/xarray/issues/7295 | IC_kwDOAMm_X85c4TeA | OriolAbril 23738400 | 2023-05-23T00:26:07Z | 2023-05-23T00:26:07Z | CONTRIBUTOR | Finally had some time to play around with the accessors, I have opened a PR adding them: https://github.com/arviz-devs/xarray-einstats/pull/51 |
{ "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 2, "rocket": 0, "eyes": 0 } |
einops integration? 1452291042 | |
1557440032 | https://github.com/pydata/xarray/issues/5644#issuecomment-1557440032 | https://api.github.com/repos/pydata/xarray/issues/5644 | IC_kwDOAMm_X85c1KYg | malmans2 22245117 | 2023-05-22T15:35:54Z | 2023-05-22T15:35:54Z | CONTRIBUTOR | Hi! I was about to open a new issue about this, but looks like it's a known issue and there's a stale PR... Let me know if I can help to get this fixed! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`polyfit` with weights alters the DataArray in place 955043280 | |
1555970164 | https://github.com/pydata/xarray/issues/7665#issuecomment-1555970164 | https://api.github.com/repos/pydata/xarray/issues/7665 | IC_kwDOAMm_X85cvjh0 | Ockenfuss 42680748 | 2023-05-20T18:44:53Z | 2023-05-20T18:44:53Z | CONTRIBUTOR | Do you have any thoughts on this? I think with the following signature, the function will be backward compatible:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Interpolate_na: Rework 'limit' argument documentation/implementation 1637898633 | |
1554332081 | https://github.com/pydata/xarray/pull/7019#issuecomment-1554332081 | https://api.github.com/repos/pydata/xarray/issues/7019 | IC_kwDOAMm_X85cpTmx | tomwhite 85085 | 2023-05-19T10:01:06Z | 2023-05-19T10:01:06Z | CONTRIBUTOR | Thanks for all your hard work on this @TomNicholas! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Generalize handling of chunked array types 1368740629 | |
1552140734 | https://github.com/pydata/xarray/pull/7800#issuecomment-1552140734 | https://api.github.com/repos/pydata/xarray/issues/7800 | IC_kwDOAMm_X85cg8m- | dstansby 6197628 | 2023-05-17T21:55:36Z | 2023-05-17T21:55:36Z | CONTRIBUTOR | Is keeping things in a single file a deliberate design choice? Personally from what I can see splitting up into separate files makes sense, given the original file is already so long. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
De-duplicate some unit test paramatrization 1690041959 | |
1551178793 | https://github.com/pydata/xarray/pull/7788#issuecomment-1551178793 | https://api.github.com/repos/pydata/xarray/issues/7788 | IC_kwDOAMm_X85cdRwp | maxhollmann 454724 | 2023-05-17T10:57:05Z | 2023-05-17T10:57:05Z | CONTRIBUTOR | @dcherian Sure, done :) |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix as_compatible_data for read-only np.ma.MaskedArray 1685422501 | |
1549984548 | https://github.com/pydata/xarray/pull/7788#issuecomment-1549984548 | https://api.github.com/repos/pydata/xarray/issues/7788 | IC_kwDOAMm_X85cYuMk | maxhollmann 454724 | 2023-05-16T16:21:12Z | 2023-05-16T16:21:12Z | CONTRIBUTOR | I like it, solves the concern in my previous comment as well. Updated the branch. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix as_compatible_data for read-only np.ma.MaskedArray 1685422501 | |
1549151705 | https://github.com/pydata/xarray/pull/7821#issuecomment-1549151705 | https://api.github.com/repos/pydata/xarray/issues/7821 | IC_kwDOAMm_X85cVi3Z | mgunyho 20118130 | 2023-05-16T07:35:19Z | 2023-05-16T07:40:46Z | CONTRIBUTOR | I updated the type hints now (and also did a rebase just in case). |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Implement multidimensional initial guess and bounds for `curvefit` 1698626185 | |
1546942397 | https://github.com/pydata/xarray/issues/5511#issuecomment-1546942397 | https://api.github.com/repos/pydata/xarray/issues/5511 | IC_kwDOAMm_X85cNHe9 | josephnowak 25071375 | 2023-05-14T16:41:38Z | 2023-05-14T17:03:57Z | CONTRIBUTOR | Hi @shoyer, sorry for bothering you with this issue again, I know that it is old right now, but I have been dealing with it again some days ago and I have also noticed the same problem using the region parameter, so I was thinking that based on this issue I opened on Zarr (https://github.com/zarr-developers/zarr-python/issues/1414) it would be good to implement any of this options to solve the problem:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Appending data to a dataset stored in Zarr format produce PermissonError or NaN values in the final result 927617256 | |
1545300010 | https://github.com/pydata/xarray/pull/7788#issuecomment-1545300010 | https://api.github.com/repos/pydata/xarray/issues/7788 | IC_kwDOAMm_X85cG2gq | maxhollmann 454724 | 2023-05-12T07:26:52Z | 2023-05-12T07:26:52Z | CONTRIBUTOR | @kmuehlbauer Do you need any adjustments to merge this? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix as_compatible_data for read-only np.ma.MaskedArray 1685422501 | |
1544199022 | https://github.com/pydata/xarray/issues/7833#issuecomment-1544199022 | https://api.github.com/repos/pydata/xarray/issues/7833 | IC_kwDOAMm_X85cCptu | alimanfoo 703554 | 2023-05-11T15:26:52Z | 2023-05-11T15:26:52Z | CONTRIBUTOR | Awesome, thanks @kmuehlbauer and @Illviljan 🙏🏻 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Slow performance of concat() 1704950804 | |
1543534474 | https://github.com/pydata/xarray/pull/7834#issuecomment-1543534474 | https://api.github.com/repos/pydata/xarray/issues/7834 | IC_kwDOAMm_X85cAHeK | mx-moth 132147 | 2023-05-11T08:07:58Z | 2023-05-11T08:07:58Z | CONTRIBUTOR | I thtew this pull request up before leaving the office so it would run all the tests. Turns out that I can investigate further on Monday, and combine this with the linked issues. Thanks for the extra context -- Tim Heap @.*** On Thu, 11 May 2023, at 18:03, Kai Mühlbauer wrote:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Use `numpy.can_cast` instead of casting and checking 1705163672 | |
1543433057 | https://github.com/pydata/xarray/pull/7834#issuecomment-1543433057 | https://api.github.com/repos/pydata/xarray/issues/7834 | IC_kwDOAMm_X85b_uth | mx-moth 132147 | 2023-05-11T06:52:46Z | 2023-05-11T06:52:46Z | CONTRIBUTOR | Using latest xarray and numpy >= 1.24.0, the following code generates a warning. This function is called when saving datasets to disk using
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Use `numpy.can_cast` instead of casting and checking 1705163672 | |
1543417823 | https://github.com/pydata/xarray/pull/7834#issuecomment-1543417823 | https://api.github.com/repos/pydata/xarray/issues/7834 | IC_kwDOAMm_X85b_q_f | mx-moth 132147 | 2023-05-11T06:36:59Z | 2023-05-11T06:36:59Z | CONTRIBUTOR | Unsure if new tests need to be added, as the intention is that no behaviour changes except for the lack of warnings from numpy. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Use `numpy.can_cast` instead of casting and checking 1705163672 | |
1539073371 | https://github.com/pydata/xarray/issues/7237#issuecomment-1539073371 | https://api.github.com/repos/pydata/xarray/issues/7237 | IC_kwDOAMm_X85bvGVb | djhoese 1828519 | 2023-05-08T21:23:59Z | 2023-05-08T21:23:59Z | CONTRIBUTOR | And with new pandas (which I understand as being the thing/library that is changing) and new xarray, what will happen? What happens between nano and non-nano times? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
The new NON_NANOSECOND_WARNING is not very nice to end users 1428549868 | |
1538397945 | https://github.com/pydata/xarray/issues/7237#issuecomment-1538397945 | https://api.github.com/repos/pydata/xarray/issues/7237 | IC_kwDOAMm_X85bshb5 | djhoese 1828519 | 2023-05-08T13:53:19Z | 2023-05-08T13:53:19Z | CONTRIBUTOR | Sorry for dragging this issue up again, but even with the new warning message I still have some questions. Do I have to switch to nanosecond precision times or will xarray/pandas/numpy just figure it out when I combine/compare times with different precisions? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
The new NON_NANOSECOND_WARNING is not very nice to end users 1428549868 | |
1538068408 | https://github.com/pydata/xarray/issues/6854#issuecomment-1538068408 | https://api.github.com/repos/pydata/xarray/issues/6854 | IC_kwDOAMm_X85brQ-4 | QuLogic 302469 | 2023-05-08T09:42:08Z | 2023-05-08T09:42:08Z | CONTRIBUTOR | I think this was fixed by https://github.com/Unidata/netcdf-c/issues/2573 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
test_open_nczarr uses too much memory 1323734180 | |
1537368210 | https://github.com/pydata/xarray/pull/7821#issuecomment-1537368210 | https://api.github.com/repos/pydata/xarray/issues/7821 | IC_kwDOAMm_X85bomCS | mgunyho 20118130 | 2023-05-07T09:23:16Z | 2023-05-07T09:23:16Z | CONTRIBUTOR | I implemented the broadcasting for bounds also. I hope it's not too ugly. Do you think the signature for |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Implement multidimensional initial guess and bounds for `curvefit` 1698626185 | |
1537162245 | https://github.com/pydata/xarray/pull/7821#issuecomment-1537162245 | https://api.github.com/repos/pydata/xarray/issues/7821 | IC_kwDOAMm_X85bnzwF | slevang 39069044 | 2023-05-06T15:12:57Z | 2023-05-06T15:12:57Z | CONTRIBUTOR | This looks pretty good to me on first glance! I would vote to do |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Implement multidimensional initial guess and bounds for `curvefit` 1698626185 | |
1537159048 | https://github.com/pydata/xarray/pull/7821#issuecomment-1537159048 | https://api.github.com/repos/pydata/xarray/issues/7821 | IC_kwDOAMm_X85bny-I | mgunyho 20118130 | 2023-05-06T14:56:05Z | 2023-05-06T14:56:05Z | CONTRIBUTOR | I just noticed that the docs for |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Implement multidimensional initial guess and bounds for `curvefit` 1698626185 | |
1537142237 | https://github.com/pydata/xarray/pull/7821#issuecomment-1537142237 | https://api.github.com/repos/pydata/xarray/issues/7821 | IC_kwDOAMm_X85bnu3d | mgunyho 20118130 | 2023-05-06T13:25:41Z | 2023-05-06T13:25:52Z | CONTRIBUTOR | Hm the doctest failed because the result is off in the last decimal place. I can't reproduce it, even though I have the same versions of numpy |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Implement multidimensional initial guess and bounds for `curvefit` 1698626185 | |
1537140981 | https://github.com/pydata/xarray/issues/7768#issuecomment-1537140981 | https://api.github.com/repos/pydata/xarray/issues/7768 | IC_kwDOAMm_X85bnuj1 | mgunyho 20118130 | 2023-05-06T13:18:47Z | 2023-05-06T13:18:47Z | CONTRIBUTOR | I implemented this for I can also do this for the bounds, just didn't have time to do it yet. How do you think the multidimensional bounds should be passed? As a tuple of arrays, or as an array of tuples, or something else? To me, it would make most sense to pass them as tuples of "things that can be broadcast", so that e.g. the lower bound of can be a scalar 0, but the upper bound could vary. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Supplying multidimensional initial guess to `curvefit` 1674818753 | |
1537132014 | https://github.com/pydata/xarray/pull/7799#issuecomment-1537132014 | https://api.github.com/repos/pydata/xarray/issues/7799 | IC_kwDOAMm_X85bnsXu | dstansby 6197628 | 2023-05-06T12:30:03Z | 2023-05-06T12:30:03Z | CONTRIBUTOR | I think this is good for review now? There's plenty of tests lower down the file that can be generalised using the new framework I've introduced, but I think worth leaving that to another PR to make this one easier to review. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Start making unit testing more general 1690019325 | |
1461573402 | https://github.com/pydata/xarray/issues/7593#issuecomment-1461573402 | https://api.github.com/repos/pydata/xarray/issues/7593 | IC_kwDOAMm_X85XHdca | quantsnus 25102059 | 2023-03-09T08:41:16Z | 2023-05-06T03:24:46Z | CONTRIBUTOR | @Karimat22
No, I don't. This is the title of the issue!
No, I don't. We are in the xarray repository!
All below does not really make sense, with respect to my issue posted. Quite frankly, your post reads like it was copy and pasted from ChatGPT or similar. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Plotting with time-zone-aware pd.Timestamp axis not possible 1613054013 | |
1536054499 | https://github.com/pydata/xarray/issues/7813#issuecomment-1536054499 | https://api.github.com/repos/pydata/xarray/issues/7813 | IC_kwDOAMm_X85bjlTj | tomwhite 85085 | 2023-05-05T10:30:38Z | 2023-05-05T10:30:38Z | CONTRIBUTOR | Ah I understand better now. This makes sense - if |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Task naming for general chunkmanagers 1694956396 | |
1534281206 | https://github.com/pydata/xarray/issues/7813#issuecomment-1534281206 | https://api.github.com/repos/pydata/xarray/issues/7813 | IC_kwDOAMm_X85bc0X2 | tomwhite 85085 | 2023-05-04T08:22:05Z | 2023-05-04T08:22:05Z | CONTRIBUTOR | If you hover over a node in the SVG representation you'll get a tooltip that shows the call stack and the line number of the top-level user function that invoked the computation. Does that help at all? (That said, I'm open to changing the way it is displayed, or how tasks are named in general.) BTW should this be moved to a cubed issue? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Task naming for general chunkmanagers 1694956396 | |
1532986706 | https://github.com/pydata/xarray/pull/7798#issuecomment-1532986706 | https://api.github.com/repos/pydata/xarray/issues/7798 | IC_kwDOAMm_X85bX4VS | slevang 39069044 | 2023-05-03T12:58:35Z | 2023-05-03T12:58:35Z | CONTRIBUTOR | Would it be possible to run another bug fix release with this incorporated? Or I guess we're already on to |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix groupby binary ops when grouped array is subset relative to other 1689773381 | |
1532601237 | https://github.com/pydata/xarray/issues/7516#issuecomment-1532601237 | https://api.github.com/repos/pydata/xarray/issues/7516 | IC_kwDOAMm_X85bWaOV | Thomas-Z 1492047 | 2023-05-03T07:58:22Z | 2023-05-03T07:58:22Z | CONTRIBUTOR | Hello, I'm not sure performances problematics were fully addressed (we're now forced to fully compute/load the selection expression) but changes made in the last versions makes this issue irrelevant and I think we can close it. Thank you! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Dataset.where performances regression. 1575938277 | |
1530256448 | https://github.com/pydata/xarray/issues/7802#issuecomment-1530256448 | https://api.github.com/repos/pydata/xarray/issues/7802 | IC_kwDOAMm_X85bNdxA | ksunden 2501846 | 2023-05-01T21:00:30Z | 2023-05-01T21:00:30Z | CONTRIBUTOR | [xy]ticks upstream PR submitted, linked above |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 } |
Mypy errors with matplotlib 3.8 1691206894 | |
1529920573 | https://github.com/pydata/xarray/pull/7799#issuecomment-1529920573 | https://api.github.com/repos/pydata/xarray/issues/7799 | IC_kwDOAMm_X85bMLw9 | dstansby 6197628 | 2023-05-01T16:26:31Z | 2023-05-01T16:26:31Z | CONTRIBUTOR | I was not aware of https://github.com/pydata/xarray/issues/6894, which is definitely my bad for not searching properley before setting off 😄 It looks like the changes I'm proposing here are probably orthogonal to work in https://github.com/pydata/xarray/issues/6894 though? The new tests added in #6894 still use Anyway, definitely agree that it would be good to have the end goal in mind here. Not sure if I'll be able to find time for a synchronous discussion, but happy for others to do that and report back, or happy to chat async somewhere that isn't a github issue if that would be helpful. |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 1, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Start making unit testing more general 1690019325 | |
1529130077 | https://github.com/pydata/xarray/pull/7798#issuecomment-1529130077 | https://api.github.com/repos/pydata/xarray/issues/7798 | IC_kwDOAMm_X85bJKxd | abrammer 6145107 | 2023-04-30T20:15:24Z | 2023-04-30T20:20:21Z | CONTRIBUTOR | Apologies, that's my bad. Looks like I introduced a broken test and didn't manually double check the results coming back. The right shift test should have been: ``` python right_expected = Dataset( { "x": ("index", [0, 0, 2, 2]), "y": ("index", [-1, -1, -2, -2]), "level": ("index", [0, 0, 4, 4]), "index": [0, 1, 2, 3], } )
``` I haven't paid attention to this issue, but doing the groupby manually didn't have the bug fwiw. Probably overkill test that only fails at the last assert before this fix```python def test_groupby_math_bitshift() -> None: # create new dataset of int's only ds = Dataset( { "x": ("index", np.ones(4, dtype=int)), "y": ("index", np.ones(4, dtype=int) * -1), "level": ("index", [1, 1, 2, 2]), "index": [0, 1, 2, 3], } ) shift = DataArray([1, 2, 1], [("level", [1, 2, 8])]) left_expected = Dataset( { "x": ("index", [2, 2, 4, 4]), "y": ("index", [-2, -2, -4, -4]), "level": ("index", [2, 2, 8, 8]), "index": [0, 1, 2, 3], } ) left_manual = [] for lev, group in ds.groupby("level"): shifter = shift.sel(level=lev) left_manual.append(group << shifter) left_actual = xr.concat(left_manual, dim="index").reset_coords(names="level") assert_equal(left_expected, left_actual) left_actual = (ds.groupby("level") << shift).reset_coords(names="level") assert_equal(left_expected, left_actual) right_expected = Dataset( { "x": ("index", [0, 0, 2, 2]), "y": ("index", [-1, -1, -2, -2]), "level": ("index", [0, 0, 4, 4]), "index": [0, 1, 2, 3], } ) right_manual = [] for lev, group in left_expected.groupby("level"): shifter = shift.sel(level=lev) right_manual.append(group >> shifter) right_actual = xr.concat(right_manual, dim="index").reset_coords(names="level") assert_equal(right_expected, right_actual) right_actual = (left_expected.groupby("level") >> shift).reset_coords(names="level") assert_equal(right_expected, right_actual) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix groupby binary ops when grouped array is subset relative to other 1689773381 | |
1529050645 | https://github.com/pydata/xarray/pull/7798#issuecomment-1529050645 | https://api.github.com/repos/pydata/xarray/issues/7798 | IC_kwDOAMm_X85bI3YV | slevang 39069044 | 2023-04-30T15:20:47Z | 2023-04-30T15:20:47Z | CONTRIBUTOR | Thanks for the quick fix! Not sure about the bitshift test but I'm assuming @headtr1ck is right. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix groupby binary ops when grouped array is subset relative to other 1689773381 | |
1528091492 | https://github.com/pydata/xarray/pull/7787#issuecomment-1528091492 | https://api.github.com/repos/pydata/xarray/issues/7787 | IC_kwDOAMm_X85bFNNk | ksunden 2501846 | 2023-04-28T21:02:29Z | 2023-04-28T21:02:29Z | CONTRIBUTOR | The suggestion from mpl (specifically @tacaswell) was to use constrained layout for the purpose that xarray currently uses |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Allow the label run-upstream to run upstream CI 1684281101 | |
1527322138 | https://github.com/pydata/xarray/pull/7788#issuecomment-1527322138 | https://api.github.com/repos/pydata/xarray/issues/7788 | IC_kwDOAMm_X85bCRYa | maxhollmann 454724 | 2023-04-28T10:10:08Z | 2023-04-28T10:10:08Z | CONTRIBUTOR | @kmuehlbauer Okay, I got it. It only seems to happen with float arrays. I adjusted the test, and it now fails without the fix. Only tangentially related to this PR, but I noticed that |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix as_compatible_data for read-only np.ma.MaskedArray 1685422501 | |
1527198919 | https://github.com/pydata/xarray/pull/7788#issuecomment-1527198919 | https://api.github.com/repos/pydata/xarray/issues/7788 | IC_kwDOAMm_X85bBzTH | maxhollmann 454724 | 2023-04-28T08:41:32Z | 2023-04-28T08:41:32Z | CONTRIBUTOR | @kmuehlbauer For some reason I can't reproduce it anymore. I'll monitor whether it occurs again in the original situation and close this otherwise after some time. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix as_compatible_data for read-only np.ma.MaskedArray 1685422501 | |
1524063361 | https://github.com/pydata/xarray/pull/7741#issuecomment-1524063361 | https://api.github.com/repos/pydata/xarray/issues/7741 | IC_kwDOAMm_X85a11yB | abrammer 6145107 | 2023-04-26T21:24:14Z | 2023-04-26T21:24:14Z | CONTRIBUTOR | The commits yesterday were to add an entry to whats-new and a couple examples lines to the computation doc page. I didn't find the binary_ops listed in methods anywhere, so this was the best idea I had? In the block just above missing-values: https://xray--7741.org.readthedocs.build/en/7741/user-guide/computation.html#missing-values Otherwise, I think this is done from my perspective. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add lshift and rshift operators 1659654612 | |
1523870704 | https://github.com/pydata/xarray/issues/7789#issuecomment-1523870704 | https://api.github.com/repos/pydata/xarray/issues/7789 | IC_kwDOAMm_X85a1Gvw | jerabaul29 8382834 | 2023-04-26T18:30:58Z | 2023-04-26T18:32:33Z | CONTRIBUTOR | Just found the solution (ironic, I had been bumping my head into this for quite a while before writing this issue, but found the solution right after writing this): one needs to provide both
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Cannot access zarr data on Azure using shared access signatures (SAS) 1685503657 | |
1523837408 | https://github.com/pydata/xarray/pull/7788#issuecomment-1523837408 | https://api.github.com/repos/pydata/xarray/issues/7788 | IC_kwDOAMm_X85a0-ng | maxhollmann 454724 | 2023-04-26T18:01:45Z | 2023-04-26T18:01:45Z | CONTRIBUTOR | @kmuehlbauer Sure, I pushed the test as I was hoping it would work. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix as_compatible_data for read-only np.ma.MaskedArray 1685422501 | |
1523814515 | https://github.com/pydata/xarray/pull/7788#issuecomment-1523814515 | https://api.github.com/repos/pydata/xarray/issues/7788 | IC_kwDOAMm_X85a05Bz | maxhollmann 454724 | 2023-04-26T17:41:47Z | 2023-04-26T17:41:47Z | CONTRIBUTOR | Hi @kmuehlbauer, no worries! It's in draft because can't figure out how to reproduce this bug for the tests. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Fix as_compatible_data for read-only np.ma.MaskedArray 1685422501 | |
1523743471 | https://github.com/pydata/xarray/pull/7787#issuecomment-1523743471 | https://api.github.com/repos/pydata/xarray/issues/7787 | IC_kwDOAMm_X85a0nrv | ksunden 2501846 | 2023-04-26T16:46:14Z | 2023-04-26T16:46:14Z | CONTRIBUTOR | Tackling a few of them (but not all in one go):
|
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 1, "eyes": 0 } |
Allow the label run-upstream to run upstream CI 1684281101 | |
1520409398 | https://github.com/pydata/xarray/issues/7782#issuecomment-1520409398 | https://api.github.com/repos/pydata/xarray/issues/7782 | IC_kwDOAMm_X85an5s2 | Articoking 90768774 | 2023-04-24T15:39:50Z | 2023-04-24T15:39:50Z | CONTRIBUTOR | Your suggestion worked perfectly, thank you very much! Avoiding using |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xr.open_dataset() reading ubyte variables as float32 from DAP server 1681353195 | |
1520341470 | https://github.com/pydata/xarray/issues/7782#issuecomment-1520341470 | https://api.github.com/repos/pydata/xarray/issues/7782 | IC_kwDOAMm_X85anpHe | Articoking 90768774 | 2023-04-24T14:58:36Z | 2023-04-24T14:58:36Z | CONTRIBUTOR | Thank you for your quick reply. Adding the It would save me quite a lot of processing time since using |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xr.open_dataset() reading ubyte variables as float32 from DAP server 1681353195 | |
1519536791 | https://github.com/pydata/xarray/issues/7388#issuecomment-1519536791 | https://api.github.com/repos/pydata/xarray/issues/7388 | IC_kwDOAMm_X85akkqX | markelg 6883049 | 2023-04-24T07:32:26Z | 2023-04-24T07:32:26Z | CONTRIBUTOR | Good question. Right now ci/requirements/environment.yml is resolving libnetcdf 4.9.1, so fixing 4.9.2 would not work. I am not sure why or how to change this, as few package versions are pinned. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray does not support full range of netcdf-python compression options 1503046820 | |
1517820737 | https://github.com/pydata/xarray/issues/7388#issuecomment-1517820737 | https://api.github.com/repos/pydata/xarray/issues/7388 | IC_kwDOAMm_X85aeBtB | markelg 6883049 | 2023-04-21T13:15:03Z | 2023-04-21T13:15:03Z | CONTRIBUTOR | I think it is about these two issues only, so backporting the fixes it should work. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray does not support full range of netcdf-python compression options 1503046820 | |
1516681755 | https://github.com/pydata/xarray/issues/7768#issuecomment-1516681755 | https://api.github.com/repos/pydata/xarray/issues/7768 | IC_kwDOAMm_X85aZrob | slevang 39069044 | 2023-04-20T17:16:39Z | 2023-04-20T17:16:39Z | CONTRIBUTOR | This should be doable. I think we would have to rework the |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Supplying multidimensional initial guess to `curvefit` 1674818753 | |
1516345065 | https://github.com/pydata/xarray/pull/7424#issuecomment-1516345065 | https://api.github.com/repos/pydata/xarray/issues/7424 | IC_kwDOAMm_X85aYZbp | tomwhite 85085 | 2023-04-20T13:37:13Z | 2023-04-20T13:37:13Z | CONTRIBUTOR | Related issue: https://github.com/data-apis/array-api/issues/621 |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 1 } |
array api - Add tests for aggregations 1522810384 | |
1515539273 | https://github.com/pydata/xarray/issues/7770#issuecomment-1515539273 | https://api.github.com/repos/pydata/xarray/issues/7770 | IC_kwDOAMm_X85aVUtJ | hmaarrfk 90008 | 2023-04-20T00:15:23Z | 2023-04-20T00:15:23Z | CONTRIBUTOR | Understood. Thank you for your prompt replies. I'll read up on ask again if I have any questions. I guess I was trying to accommodate in the past users that were not using our wrappers to |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Provide a public API for adding new backends 1675299031 | |
1515142339 | https://github.com/pydata/xarray/pull/7739#issuecomment-1515142339 | https://api.github.com/repos/pydata/xarray/issues/7739 | IC_kwDOAMm_X85aTzzD | jmccreight 12465248 | 2023-04-19T17:55:16Z | 2023-04-19T17:55:16Z | CONTRIBUTOR | I followed |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`ds.to_dict` with data as arrays, not lists 1659078413 | |
1514700581 | https://github.com/pydata/xarray/pull/7739#issuecomment-1514700581 | https://api.github.com/repos/pydata/xarray/issues/7739 | IC_kwDOAMm_X85aSH8l | jmccreight 12465248 | 2023-04-19T13:04:19Z | 2023-04-19T13:04:19Z | CONTRIBUTOR | Making all the requested changes, the above should resolve momentarily. I like this "trick"/suggestion:
I will implement this if we are in agreement with @dcherian |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`ds.to_dict` with data as arrays, not lists 1659078413 | |
1511596653 | https://github.com/pydata/xarray/issues/7388#issuecomment-1511596653 | https://api.github.com/repos/pydata/xarray/issues/7388 | IC_kwDOAMm_X85aGSJt | markelg 6883049 | 2023-04-17T15:28:21Z | 2023-04-17T15:29:43Z | CONTRIBUTOR | Thanks. It looks like the errors are related to this bug https://github.com/Unidata/netcdf-c/issues/2674 The fix has been merged so I hope they include it in the next netcdf-c release. For the moment I prefer not to merge this as netcdf 4.9.2 and dask do not seem to play well together. |
{ "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray does not support full range of netcdf-python compression options 1503046820 | |
1511459288 | https://github.com/pydata/xarray/pull/7739#issuecomment-1511459288 | https://api.github.com/repos/pydata/xarray/issues/7739 | IC_kwDOAMm_X85aFwnY | jmccreight 12465248 | 2023-04-17T14:22:50Z | 2023-04-17T14:22:50Z | CONTRIBUTOR | I'm happy to "fix" the mypy issues, but it's on that I suspect might be requested for changes (if I recall correctly, it's just in the tests) |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`ds.to_dict` with data as arrays, not lists 1659078413 | |
1507182085 | https://github.com/pydata/xarray/pull/7681#issuecomment-1507182085 | https://api.github.com/repos/pydata/xarray/issues/7681 | IC_kwDOAMm_X85Z1cYF | harshitha1201 97012127 | 2023-04-13T15:34:29Z | 2023-04-13T15:34:29Z | CONTRIBUTOR |
Thank you!! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
restructure the contributing guide 1641188400 | |
1507176030 | https://github.com/pydata/xarray/pull/7461#issuecomment-1507176030 | https://api.github.com/repos/pydata/xarray/issues/7461 | IC_kwDOAMm_X85Z1a5e | st-bender 28786187 | 2023-04-13T15:30:28Z | 2023-04-13T15:30:28Z | CONTRIBUTOR | Hi,
That's not how I interpret the link given by @dcherian, which states "rolling" minimum versions based on age. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
bump minimum versions, drop py38 1550109629 | |
1507150495 | https://github.com/pydata/xarray/pull/7461#issuecomment-1507150495 | https://api.github.com/repos/pydata/xarray/issues/7461 | IC_kwDOAMm_X85Z1Uqf | st-bender 28786187 | 2023-04-13T15:13:28Z | 2023-04-13T15:13:28Z | CONTRIBUTOR | Hi @dcherian
I assume you have given this a lot of thought, but imho the minimum dependency versions should be decided according to features needed, not timing.
Thanks for the pointer.
I am not sure why, maybe I was updating too eagerly before the feedstock was fixed, but
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
bump minimum versions, drop py38 1550109629 | |
1505014586 | https://github.com/pydata/xarray/pull/7732#issuecomment-1505014586 | https://api.github.com/repos/pydata/xarray/issues/7732 | IC_kwDOAMm_X85ZtLM6 | harshitha1201 97012127 | 2023-04-12T10:11:20Z | 2023-04-12T10:11:20Z | CONTRIBUTOR | @headtr1ck I have done the changes required, please review |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Extending the glossary 1657534038 | |
1504309371 | https://github.com/pydata/xarray/pull/7739#issuecomment-1504309371 | https://api.github.com/repos/pydata/xarray/issues/7739 | IC_kwDOAMm_X85ZqfB7 | jmccreight 12465248 | 2023-04-12T00:13:03Z | 2023-04-12T00:13:03Z | CONTRIBUTOR | i kinda implied, but I'll just state that the extra code to test equality of encodings is not handsome. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`ds.to_dict` with data as arrays, not lists 1659078413 | |
1504297701 | https://github.com/pydata/xarray/pull/7739#issuecomment-1504297701 | https://api.github.com/repos/pydata/xarray/issues/7739 | IC_kwDOAMm_X85ZqcLl | jmccreight 12465248 | 2023-04-12T00:03:23Z | 2023-04-12T00:03:23Z | CONTRIBUTOR | @dcherian thanks! I didnt incoroprate any suggestions yet.
regarding the inequality of encodings of datasets is obscured by |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`ds.to_dict` with data as arrays, not lists 1659078413 | |
1504241169 | https://github.com/pydata/xarray/pull/7739#issuecomment-1504241169 | https://api.github.com/repos/pydata/xarray/issues/7739 | IC_kwDOAMm_X85ZqOYR | jmccreight 12465248 | 2023-04-11T23:09:57Z | 2023-04-11T23:09:57Z | CONTRIBUTOR | In the off-hand chance this is reviewed before I push again, do not merge. I have a fix to encodings not getting properly roundtripped in Ds.from_dict(ds.to_dict). it was minor to fix but making sure it's tested will take a min |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`ds.to_dict` with data as arrays, not lists 1659078413 | |
1503827455 | https://github.com/pydata/xarray/issues/7388#issuecomment-1503827455 | https://api.github.com/repos/pydata/xarray/issues/7388 | IC_kwDOAMm_X85ZopX_ | markelg 6883049 | 2023-04-11T17:38:51Z | 2023-04-11T17:38:51Z | CONTRIBUTOR | Hi. I updated the branch and created a fresh python environment with the idea of writing another, final test for this. However before doing it I run the test suite, and got some bad HDF5 errors in test_backends.py::test_open_mfdataset_manyfiles[netcdf4-20-True-None-5]
I am not sure what is going on. It seems that the currently resolved netcdf4-hdf5 versions do not like the default parameters we are supplying. My environment is ``` Name Version Build Channel_libgcc_mutex 0.1 conda_forge conda-forge _openmp_mutex 4.5 2_gnu conda-forge affine 2.4.0 pyhd8ed1ab_0 conda-forge aiobotocore 2.5.0 pyhd8ed1ab_0 conda-forge aiohttp 3.8.4 py310h1fa729e_0 conda-forge aioitertools 0.11.0 pyhd8ed1ab_0 conda-forge aiosignal 1.3.1 pyhd8ed1ab_0 conda-forge antlr-python-runtime 4.7.2 py310hff52083_1003 conda-forge asciitree 0.3.3 py_2 conda-forge async-timeout 4.0.2 pyhd8ed1ab_0 conda-forge attrs 22.2.0 pyh71513ae_0 conda-forge backports.zoneinfo 0.2.1 py310hff52083_7 conda-forge beautifulsoup4 4.12.2 pyha770c72_0 conda-forge blosc 1.21.3 hafa529b_0 conda-forge boost-cpp 1.78.0 h5adbc97_2 conda-forge boto3 1.26.76 pyhd8ed1ab_0 conda-forge botocore 1.29.76 pyhd8ed1ab_0 conda-forge bottleneck 1.3.7 py310h0a54255_0 conda-forge brotli 1.0.9 h166bdaf_8 conda-forge brotli-bin 1.0.9 h166bdaf_8 conda-forge brotlipy 0.7.0 py310h5764c6d_1005 conda-forge bzip2 1.0.8 h7f98852_4 conda-forge c-ares 1.18.1 h7f98852_0 conda-forge ca-certificates 2022.12.7 ha878542_0 conda-forge cached-property 1.5.2 hd8ed1ab_1 conda-forge cached_property 1.5.2 pyha770c72_1 conda-forge cairo 1.16.0 ha61ee94_1014 conda-forge cartopy 0.21.1 py310hcb7e713_0 conda-forge cdat_info 8.2.1 pyhd8ed1ab_2 conda-forge cdms2 3.1.5 py310hb9168da_16 conda-forge cdtime 3.1.4 py310h87e304a_8 conda-forge certifi 2022.12.7 pyhd8ed1ab_0 conda-forge cf-units 3.1.1 py310hde88566_2 conda-forge cffi 1.15.1 py310h255011f_3 conda-forge cfgrib 0.9.10.3 pyhd8ed1ab_0 conda-forge cfgv 3.3.1 pyhd8ed1ab_0 conda-forge cfitsio 4.2.0 hd9d235c_0 conda-forge cftime 1.6.2 py310hde88566_1 conda-forge charset-normalizer 2.1.1 pyhd8ed1ab_0 conda-forge click 8.1.3 unix_pyhd8ed1ab_2 conda-forge click-plugins 1.1.1 py_0 conda-forge cligj 0.7.2 pyhd8ed1ab_1 conda-forge cloudpickle 2.2.1 pyhd8ed1ab_0 conda-forge colorama 0.4.6 pyhd8ed1ab_0 conda-forge contourpy 1.0.7 py310hdf3cbec_0 conda-forge coverage 7.2.3 py310h1fa729e_0 conda-forge cryptography 40.0.1 py310h34c0648_0 conda-forge curl 7.88.1 hdc1c0ab_1 conda-forge cycler 0.11.0 pyhd8ed1ab_0 conda-forge cytoolz 0.12.0 py310h5764c6d_1 conda-forge dask-core 2023.3.2 pyhd8ed1ab_0 conda-forge distarray 2.12.2 pyh050c7b8_4 conda-forge distlib 0.3.6 pyhd8ed1ab_0 conda-forge distributed 2023.3.2.1 pyhd8ed1ab_0 conda-forge docopt 0.6.2 py_1 conda-forge eccodes 2.29.0 h54fcba4_0 conda-forge entrypoints 0.4 pyhd8ed1ab_0 conda-forge esmf 8.4.1 nompi_he2e5181_0 conda-forge esmpy 8.4.1 pyhc1e730c_0 conda-forge exceptiongroup 1.1.1 pyhd8ed1ab_0 conda-forge execnet 1.9.0 pyhd8ed1ab_0 conda-forge expat 2.5.0 hcb278e6_1 conda-forge fasteners 0.17.3 pyhd8ed1ab_0 conda-forge filelock 3.11.0 pyhd8ed1ab_0 conda-forge findlibs 0.0.2 pyhd8ed1ab_0 conda-forge flox 0.6.10 pyhd8ed1ab_0 conda-forge font-ttf-dejavu-sans-mono 2.37 hab24e00_0 conda-forge font-ttf-inconsolata 3.000 h77eed37_0 conda-forge font-ttf-source-code-pro 2.038 h77eed37_0 conda-forge font-ttf-ubuntu 0.83 hab24e00_0 conda-forge fontconfig 2.14.2 h14ed4e7_0 conda-forge fonts-conda-ecosystem 1 0 conda-forge fonts-conda-forge 1 0 conda-forge fonttools 4.39.3 py310h1fa729e_0 conda-forge freeglut 3.2.2 h9c3ff4c_1 conda-forge freetype 2.12.1 hca18f0e_1 conda-forge freexl 1.0.6 h166bdaf_1 conda-forge frozenlist 1.3.3 py310h5764c6d_0 conda-forge fsspec 2023.4.0 pyh1a96a4e_0 conda-forge future 0.18.3 pyhd8ed1ab_0 conda-forge g2clib 1.6.3 hbecde78_1 conda-forge geos 3.11.1 h27087fc_0 conda-forge geotiff 1.7.1 h7a142b4_6 conda-forge gettext 0.21.1 h27087fc_0 conda-forge giflib 5.2.1 h0b41bf4_3 conda-forge h5netcdf 1.1.0 pyhd8ed1ab_1 conda-forge h5py 3.8.0 nompi_py310h0311031_100 conda-forge hdf4 4.2.15 h9772cbc_5 conda-forge hdf5 1.12.2 nompi_h4df4325_101 conda-forge heapdict 1.0.1 py_0 conda-forge hypothesis 6.71.0 pyha770c72_0 conda-forge icu 70.1 h27087fc_0 conda-forge identify 2.5.22 pyhd8ed1ab_0 conda-forge idna 3.4 pyhd8ed1ab_0 conda-forge importlib-metadata 6.3.0 pyha770c72_0 conda-forge importlib_metadata 6.3.0 hd8ed1ab_0 conda-forge importlib_resources 5.12.0 pyhd8ed1ab_0 conda-forge iniconfig 2.0.0 pyhd8ed1ab_0 conda-forge iris 3.4.1 pyhd8ed1ab_0 conda-forge jasper 2.0.33 h0ff4b12_1 conda-forge jinja2 3.1.2 pyhd8ed1ab_1 conda-forge jmespath 1.0.1 pyhd8ed1ab_0 conda-forge jpeg 9e h0b41bf4_3 conda-forge json-c 0.16 hc379101_0 conda-forge jsonschema 4.17.3 pyhd8ed1ab_0 conda-forge jupyter_core 5.3.0 py310hff52083_0 conda-forge kealib 1.5.0 ha7026e8_0 conda-forge keyutils 1.6.1 h166bdaf_0 conda-forge kiwisolver 1.4.4 py310hbf28c38_1 conda-forge krb5 1.20.1 h81ceb04_0 conda-forge lazy-object-proxy 1.9.0 py310h1fa729e_0 conda-forge lcms2 2.15 hfd0df8a_0 conda-forge ld_impl_linux-64 2.40 h41732ed_0 conda-forge lerc 4.0.0 h27087fc_0 conda-forge libaec 1.0.6 hcb278e6_1 conda-forge libblas 3.9.0 16_linux64_openblas conda-forge libbrotlicommon 1.0.9 h166bdaf_8 conda-forge libbrotlidec 1.0.9 h166bdaf_8 conda-forge libbrotlienc 1.0.9 h166bdaf_8 conda-forge libcblas 3.9.0 16_linux64_openblas conda-forge libcdms 3.1.2 h9366c0b_120 conda-forge libcf 1.0.3 py310h71500c5_116 conda-forge libcurl 7.88.1 hdc1c0ab_1 conda-forge libdeflate 1.17 h0b41bf4_0 conda-forge libdrs 3.1.2 h01ed8d5_119 conda-forge libdrs_f 3.1.2 h059c5b8_115 conda-forge libedit 3.1.20191231 he28a2e2_2 conda-forge libev 4.33 h516909a_1 conda-forge libexpat 2.5.0 hcb278e6_1 conda-forge libffi 3.4.2 h7f98852_5 conda-forge libgcc-ng 12.2.0 h65d4601_19 conda-forge libgdal 3.6.2 h6c674c2_9 conda-forge libgfortran-ng 12.2.0 h69a702a_19 conda-forge libgfortran5 12.2.0 h337968e_19 conda-forge libglib 2.74.1 h606061b_1 conda-forge libglu 9.0.0 he1b5a44_1001 conda-forge libgomp 12.2.0 h65d4601_19 conda-forge libiconv 1.17 h166bdaf_0 conda-forge libkml 1.3.0 h37653c0_1015 conda-forge liblapack 3.9.0 16_linux64_openblas conda-forge libllvm11 11.1.0 he0ac6c6_5 conda-forge libnetcdf 4.9.1 nompi_h34a3ff0_101 conda-forge libnghttp2 1.52.0 h61bc06f_0 conda-forge libnsl 2.0.0 h7f98852_0 conda-forge libopenblas 0.3.21 pthreads_h78a6416_3 conda-forge libpng 1.6.39 h753d276_0 conda-forge libpq 15.2 hb675445_0 conda-forge librttopo 1.1.0 ha49c73b_12 conda-forge libspatialite 5.0.1 h221c8f1_23 conda-forge libsqlite 3.40.0 h753d276_0 conda-forge libssh2 1.10.0 hf14f497_3 conda-forge libstdcxx-ng 12.2.0 h46fd767_19 conda-forge libtiff 4.5.0 h6adf6a1_2 conda-forge libuuid 2.38.1 h0b41bf4_0 conda-forge libwebp-base 1.3.0 h0b41bf4_0 conda-forge libxcb 1.13 h7f98852_1004 conda-forge libxml2 2.10.3 hca2bb57_4 conda-forge libxslt 1.1.37 h873f0b0_0 conda-forge libzip 1.9.2 hc929e4a_1 conda-forge libzlib 1.2.13 h166bdaf_4 conda-forge llvmlite 0.39.1 py310h58363a5_1 conda-forge locket 1.0.0 pyhd8ed1ab_0 conda-forge lxml 4.9.2 py310hbdc0903_0 conda-forge lz4-c 1.9.4 hcb278e6_0 conda-forge markupsafe 2.1.2 py310h1fa729e_0 conda-forge matplotlib-base 3.7.1 py310he60537e_0 conda-forge msgpack-python 1.0.5 py310hdf3cbec_0 conda-forge multidict 6.0.4 py310h1fa729e_0 conda-forge munkres 1.1.4 pyh9f0ad1d_0 conda-forge nbformat 5.8.0 pyhd8ed1ab_0 conda-forge nc-time-axis 1.4.1 pyhd8ed1ab_0 conda-forge ncurses 6.3 h27087fc_1 conda-forge netcdf-fortran 4.6.0 nompi_heb5813c_103 conda-forge netcdf4 1.6.3 nompi_py310h0feb132_100 conda-forge nodeenv 1.7.0 pyhd8ed1ab_0 conda-forge nomkl 1.0 h5ca1d4c_0 conda-forge nspr 4.35 h27087fc_0 conda-forge nss 3.89 he45b914_0 conda-forge numba 0.56.4 py310h0e39c9b_1 conda-forge numbagg 0.2.2 pyhd8ed1ab_1 conda-forge numcodecs 0.11.0 py310heca2aa9_1 conda-forge numexpr 2.8.4 py310h690d005_100 conda-forge numpy 1.23.5 py310h53a5b5f_0 conda-forge numpy_groupies 0.9.20 pyhd8ed1ab_0 conda-forge openblas 0.3.21 pthreads_h320a7e8_3 conda-forge openjpeg 2.5.0 hfec8fc6_2 conda-forge openssl 3.1.0 h0b41bf4_0 conda-forge packaging 23.0 pyhd8ed1ab_0 conda-forge pandas 1.5.3 py310h9b08913_1 conda-forge partd 1.3.0 pyhd8ed1ab_0 conda-forge patsy 0.5.3 pyhd8ed1ab_0 conda-forge pcre2 10.40 hc3806b6_0 conda-forge pillow 9.4.0 py310h023d228_1 conda-forge pint 0.20.1 pyhd8ed1ab_0 conda-forge pip 23.0.1 pyhd8ed1ab_0 conda-forge pixman 0.40.0 h36c2ea0_0 conda-forge pkgutil-resolve-name 1.3.10 pyhd8ed1ab_0 conda-forge platformdirs 3.2.0 pyhd8ed1ab_0 conda-forge pluggy 1.0.0 pyhd8ed1ab_5 conda-forge pooch 1.7.0 pyha770c72_3 conda-forge poppler 23.03.0 h091648b_0 conda-forge poppler-data 0.4.12 hd8ed1ab_0 conda-forge postgresql 15.2 h3248436_0 conda-forge pre-commit 3.2.2 pyha770c72_0 conda-forge proj 9.1.1 h8ffa02c_2 conda-forge pseudonetcdf 3.2.2 pyhd8ed1ab_0 conda-forge psutil 5.9.4 py310h5764c6d_0 conda-forge pthread-stubs 0.4 h36c2ea0_1001 conda-forge pycparser 2.21 pyhd8ed1ab_0 conda-forge pydap 3.4.0 pyhd8ed1ab_0 conda-forge pyopenssl 23.1.1 pyhd8ed1ab_0 conda-forge pyparsing 3.0.9 pyhd8ed1ab_0 conda-forge pyproj 3.5.0 py310h15e2413_0 conda-forge pyrsistent 0.19.3 py310h1fa729e_0 conda-forge pyshp 2.3.1 pyhd8ed1ab_0 conda-forge pysocks 1.7.1 pyha2e5f31_6 conda-forge pytest 7.3.0 pyhd8ed1ab_0 conda-forge pytest-cov 4.0.0 pyhd8ed1ab_0 conda-forge pytest-env 0.8.1 pyhd8ed1ab_0 conda-forge pytest-xdist 3.2.1 pyhd8ed1ab_0 conda-forge python 3.10.10 he550d4f_0_cpython conda-forge python-dateutil 2.8.2 pyhd8ed1ab_0 conda-forge python-eccodes 1.5.1 py310h0a54255_0 conda-forge python-fastjsonschema 2.16.3 pyhd8ed1ab_0 conda-forge python-xxhash 3.2.0 py310h1fa729e_0 conda-forge python_abi 3.10 3_cp310 conda-forge pytz 2023.3 pyhd8ed1ab_0 conda-forge pyyaml 6.0 py310h5764c6d_5 conda-forge rasterio 1.3.6 py310h3e853a9_0 conda-forge readline 8.2 h8228510_1 conda-forge requests 2.28.2 pyhd8ed1ab_1 conda-forge s3transfer 0.6.0 pyhd8ed1ab_0 conda-forge scipy 1.10.1 py310h8deb116_0 conda-forge seaborn 0.12.2 hd8ed1ab_0 conda-forge seaborn-base 0.12.2 pyhd8ed1ab_0 conda-forge setuptools 67.6.1 pyhd8ed1ab_0 conda-forge shapely 2.0.1 py310h8b84c32_0 conda-forge six 1.16.0 pyh6c4a22f_0 conda-forge snappy 1.1.10 h9fff704_0 conda-forge snuggs 1.4.7 py_0 conda-forge sortedcontainers 2.4.0 pyhd8ed1ab_0 conda-forge soupsieve 2.3.2.post1 pyhd8ed1ab_0 conda-forge sparse 0.14.0 pyhd8ed1ab_0 conda-forge sqlite 3.40.0 h4ff8645_0 conda-forge statsmodels 0.13.5 py310hde88566_2 conda-forge tblib 1.7.0 pyhd8ed1ab_0 conda-forge tiledb 2.13.2 hd532e3d_0 conda-forge tk 8.6.12 h27826a3_0 conda-forge toml 0.10.2 pyhd8ed1ab_0 conda-forge tomli 2.0.1 pyhd8ed1ab_0 conda-forge toolz 0.12.0 pyhd8ed1ab_0 conda-forge tornado 6.2 py310h5764c6d_1 conda-forge traitlets 5.9.0 pyhd8ed1ab_0 conda-forge typing-extensions 4.5.0 hd8ed1ab_0 conda-forge typing_extensions 4.5.0 pyha770c72_0 conda-forge tzcode 2023c h0b41bf4_0 conda-forge tzdata 2023c h71feb2d_0 conda-forge udunits2 2.2.28 hc3e0081_0 conda-forge ukkonen 1.0.1 py310hbf28c38_3 conda-forge unicodedata2 15.0.0 py310h5764c6d_0 conda-forge urllib3 1.26.15 pyhd8ed1ab_0 conda-forge virtualenv 20.21.0 pyhd8ed1ab_0 conda-forge webob 1.8.7 pyhd8ed1ab_0 conda-forge wheel 0.40.0 pyhd8ed1ab_0 conda-forge wrapt 1.15.0 py310h1fa729e_0 conda-forge xarray 2023.3.0 pyhd8ed1ab_0 conda-forge xerces-c 3.2.4 h55805fa_1 conda-forge xorg-fixesproto 5.0 h7f98852_1002 conda-forge xorg-inputproto 2.3.2 h7f98852_1002 conda-forge xorg-kbproto 1.0.7 h7f98852_1002 conda-forge xorg-libice 1.0.10 h7f98852_0 conda-forge xorg-libsm 1.2.3 hd9c2040_1000 conda-forge xorg-libx11 1.8.4 h0b41bf4_0 conda-forge xorg-libxau 1.0.9 h7f98852_0 conda-forge xorg-libxdmcp 1.1.3 h7f98852_0 conda-forge xorg-libxext 1.3.4 h0b41bf4_2 conda-forge xorg-libxfixes 5.0.3 h7f98852_1004 conda-forge xorg-libxi 1.7.10 h7f98852_0 conda-forge xorg-libxrender 0.9.10 h7f98852_1003 conda-forge xorg-renderproto 0.11.1 h7f98852_1002 conda-forge xorg-xextproto 7.3.0 h0b41bf4_1003 conda-forge xorg-xproto 7.0.31 h7f98852_1007 conda-forge xxhash 0.8.1 h0b41bf4_0 conda-forge xz 5.2.6 h166bdaf_0 conda-forge yaml 0.2.5 h7f98852_2 conda-forge yarl 1.8.2 py310h5764c6d_0 conda-forge zarr 2.14.2 pyhd8ed1ab_0 conda-forge zict 2.2.0 pyhd8ed1ab_0 conda-forge zipp 3.15.0 pyhd8ed1ab_0 conda-forge zlib 1.2.13 h166bdaf_4 conda-forge zstd 1.5.2 h3eb15da_6 conda-forge ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray does not support full range of netcdf-python compression options 1503046820 | |
1503671262 | https://github.com/pydata/xarray/pull/7724#issuecomment-1503671262 | https://api.github.com/repos/pydata/xarray/issues/7724 | IC_kwDOAMm_X85ZoDPe | jsignell 4806877 | 2023-04-11T15:58:48Z | 2023-04-11T15:58:48Z | CONTRIBUTOR | Is there anything I can do to help out on this? It sounds like the blocker is mypy? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`pandas=2.0` support 1655782486 | |
1503393910 | https://github.com/pydata/xarray/pull/7461#issuecomment-1503393910 | https://api.github.com/repos/pydata/xarray/issues/7461 | IC_kwDOAMm_X85Zm_h2 | st-bender 28786187 | 2023-04-11T13:50:42Z | 2023-04-11T13:50:42Z | CONTRIBUTOR | Hi,
Just to let you know that this change breaks python 3.8 setups with automatic updates becuase the |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
bump minimum versions, drop py38 1550109629 | |
1500720650 | https://github.com/pydata/xarray/pull/7739#issuecomment-1500720650 | https://api.github.com/repos/pydata/xarray/issues/7739 | IC_kwDOAMm_X85Zcy4K | jmccreight 12465248 | 2023-04-07T23:27:25Z | 2023-04-07T23:27:25Z | CONTRIBUTOR | I solved the mypy errors in a highly dubious way. 👀 |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`ds.to_dict` with data as arrays, not lists 1659078413 | |
1500558818 | https://github.com/pydata/xarray/pull/7739#issuecomment-1500558818 | https://api.github.com/repos/pydata/xarray/issues/7739 | IC_kwDOAMm_X85ZcLXi | jmccreight 12465248 | 2023-04-07T19:07:35Z | 2023-04-07T19:07:35Z | CONTRIBUTOR | I would appreciate any edification on the Mypy failures. Looking at the indicated lines, i'm 🤷 . |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`ds.to_dict` with data as arrays, not lists 1659078413 | |
1500552035 | https://github.com/pydata/xarray/issues/1599#issuecomment-1500552035 | https://api.github.com/repos/pydata/xarray/issues/1599 | IC_kwDOAMm_X85ZcJtj | jmccreight 12465248 | 2023-04-07T18:59:04Z | 2023-04-07T18:59:24Z | CONTRIBUTOR | The PR #7739 is available for review. @jhamman @dcherian would be my choices. i think this is pretty straight forward. I suppose the name of the kwarg being |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
DataArray to_dict() without converting with numpy tolist() 261727170 | |
1500449963 | https://github.com/pydata/xarray/issues/1599#issuecomment-1500449963 | https://api.github.com/repos/pydata/xarray/issues/1599 | IC_kwDOAMm_X85Zbwyr | jmccreight 12465248 | 2023-04-07T16:41:39Z | 2023-04-07T16:41:39Z | CONTRIBUTOR | I'd be interested in reviving this, this is exactly what I want to achieve. It's not clear if there was some reason this never went ahead. I looked around but didnt find anything. LMK if it there's some reason not to pursue it. THanks |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
DataArray to_dict() without converting with numpy tolist() 261727170 | |
1499591643 | https://github.com/pydata/xarray/issues/3216#issuecomment-1499591643 | https://api.github.com/repos/pydata/xarray/issues/3216 | IC_kwDOAMm_X85ZYfPb | chiaral 8453445 | 2023-04-06T20:34:19Z | 2023-04-06T20:34:47Z | CONTRIBUTOR | Hello!
Just adding a 👍 to this thread - and, since it is an old issue, wondering if this is on |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Feature request: time-based rolling window functionality 480753417 | |
1499079927 | https://github.com/pydata/xarray/pull/7731#issuecomment-1499079927 | https://api.github.com/repos/pydata/xarray/issues/7731 | IC_kwDOAMm_X85ZWiT3 | jsignell 4806877 | 2023-04-06T13:38:38Z | 2023-04-06T13:38:38Z | CONTRIBUTOR |
Otherwise the env in the upstream test will never solve right? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Continue to use nanosecond-precision Timestamps in precision-sensitive areas 1657396474 | |
1498773949 | https://github.com/pydata/xarray/issues/7721#issuecomment-1498773949 | https://api.github.com/repos/pydata/xarray/issues/7721 | IC_kwDOAMm_X85ZVXm9 | jacobtomlinson 1610850 | 2023-04-06T09:39:43Z | 2023-04-06T09:39:43Z | CONTRIBUTOR | Ping @leofang in case you have thoughts? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
`as_shared_dtype` converts scalars to 0d `numpy` arrays if chunked `cupy` is involved 1655290694 | |
1498639992 | https://github.com/pydata/xarray/pull/7669#issuecomment-1498639992 | https://api.github.com/repos/pydata/xarray/issues/7669 | IC_kwDOAMm_X85ZU254 | remigathoni 51911758 | 2023-04-06T07:53:56Z | 2023-04-06T07:53:56Z | CONTRIBUTOR |
I'll fix it! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Docstrings examples for string methods 1639361476 | |
1498200620 | https://github.com/pydata/xarray/issues/7573#issuecomment-1498200620 | https://api.github.com/repos/pydata/xarray/issues/7573 | IC_kwDOAMm_X85ZTLos | ocefpaf 950575 | 2023-04-05T21:47:19Z | 2023-04-05T21:47:19Z | CONTRIBUTOR |
+1
The PR is a good idea and we, conda-forge, even though about making something like that for all packages. The problem is that optional packages metadata in Python-land is super unreliable. So, doing it on a package bases and with the original authors as part of it, it is super safe and recommended. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add optional min versions to conda-forge recipe (`run_constrained`) 1603957501 | |
1498164858 | https://github.com/pydata/xarray/issues/7716#issuecomment-1498164858 | https://api.github.com/repos/pydata/xarray/issues/7716 | IC_kwDOAMm_X85ZTC56 | jsignell 4806877 | 2023-04-05T21:09:59Z | 2023-04-05T21:09:59Z | CONTRIBUTOR | In that case it could be reasonable to mimic the pattern in test_groupby and mark the failing tests with a |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
bad conda solve with pandas 2 1654022522 | |
1498160636 | https://github.com/pydata/xarray/issues/7716#issuecomment-1498160636 | https://api.github.com/repos/pydata/xarray/issues/7716 | IC_kwDOAMm_X85ZTB38 | mroeschke 10647082 | 2023-04-05T21:05:34Z | 2023-04-05T21:05:34Z | CONTRIBUTOR |
Chiming in from the pandas side on those failures, I think they are all expected https://pandas.pydata.org/docs/whatsnew/v2.0.0.html namely
|
{ "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
bad conda solve with pandas 2 1654022522 | |
1496186966 | https://github.com/pydata/xarray/issues/7716#issuecomment-1496186966 | https://api.github.com/repos/pydata/xarray/issues/7716 | IC_kwDOAMm_X85ZLgBW | ocefpaf 950575 | 2023-04-04T15:30:37Z | 2023-04-04T15:30:37Z | CONTRIBUTOR | @dcherian do you mind taking a look at https://github.com/conda-forge/conda-forge-repodata-patches-feedstock/pull/426? Please check the versions patched and the applied patch! Thanks! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
bad conda solve with pandas 2 1654022522 | |
1496107675 | https://github.com/pydata/xarray/issues/7716#issuecomment-1496107675 | https://api.github.com/repos/pydata/xarray/issues/7716 | IC_kwDOAMm_X85ZLMqb | ocefpaf 950575 | 2023-04-04T14:48:55Z | 2023-04-04T14:48:55Z | CONTRIBUTOR | We need to do a repodata patch for the current xarray. I'll get to it soon. |
{ "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 } |
bad conda solve with pandas 2 1654022522 | |
1494686296 | https://github.com/pydata/xarray/pull/7681#issuecomment-1494686296 | https://api.github.com/repos/pydata/xarray/issues/7681 | IC_kwDOAMm_X85ZFxpY | harshitha1201 97012127 | 2023-04-03T17:09:27Z | 2023-04-03T17:09:27Z | CONTRIBUTOR | @TomNicholas please review |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
restructure the contributing guide 1641188400 | |
1494684558 | https://github.com/pydata/xarray/pull/7694#issuecomment-1494684558 | https://api.github.com/repos/pydata/xarray/issues/7694 | IC_kwDOAMm_X85ZFxOO | harshitha1201 97012127 | 2023-04-03T17:08:13Z | 2023-04-03T17:08:13Z | CONTRIBUTOR | Thank you!! @TomNicholas and @headtr1ck for updating the commit |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
How xarray handles missing values 1644759739 | |
1494560788 | https://github.com/pydata/xarray/issues/7079#issuecomment-1494560788 | https://api.github.com/repos/pydata/xarray/issues/7079 | IC_kwDOAMm_X85ZFTAU | ocefpaf 950575 | 2023-04-03T15:44:18Z | 2023-04-03T15:44:18Z | CONTRIBUTOR | @kthyng those files are on a remote server and that may not be the segfault from the original issue here. It may be a server that is not happy with parallel access. Can you try that with local files? PS: you can also try with |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
open_mfdataset parallel=True failing with netcdf4 >= 1.6.1 1385031286 | |
1491747796 | https://github.com/pydata/xarray/issues/7701#issuecomment-1491747796 | https://api.github.com/repos/pydata/xarray/issues/7701 | IC_kwDOAMm_X85Y6kPU | veenstrajelmer 60435591 | 2023-03-31T11:03:36Z | 2023-04-03T07:36:33Z | CONTRIBUTOR | @headtr1ck I just discovered that it is not per se a difference between floats/da, but it has to do with the creation of the new dimension ( |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Recently introduced different behaviour of da.interp() when using floats vs DataArrays with new dim 1647883619 | |
1493492180 | https://github.com/pydata/xarray/pull/7706#issuecomment-1493492180 | https://api.github.com/repos/pydata/xarray/issues/7706 | IC_kwDOAMm_X85ZBOHU | nishtha981 92522516 | 2023-04-03T00:50:13Z | 2023-04-03T00:50:13Z | CONTRIBUTOR |
Hey! @headtr1ck I've added the changes to the what's new file. Please do review it! Thanks! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add: Adds a config.yml file for welcome-bot 1650309361 | |
1493382649 | https://github.com/pydata/xarray/pull/7706#issuecomment-1493382649 | https://api.github.com/repos/pydata/xarray/issues/7706 | IC_kwDOAMm_X85ZAzX5 | nishtha981 92522516 | 2023-04-02T16:16:26Z | 2023-04-02T16:16:26Z | CONTRIBUTOR | @headtr1ck I tried out the bot on a repo of mine. It worked there. I then changed the messages on the bot. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add: Adds a config.yml file for welcome-bot 1650309361 | |
1493380177 | https://github.com/pydata/xarray/pull/7681#issuecomment-1493380177 | https://api.github.com/repos/pydata/xarray/issues/7681 | IC_kwDOAMm_X85ZAyxR | harshitha1201 97012127 | 2023-04-02T16:04:19Z | 2023-04-02T16:04:19Z | CONTRIBUTOR | @headtr1ck I have done some additions and some deletions too to the contributing guide. Please let me know if any changes are needed. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
restructure the contributing guide 1641188400 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user >30