issues: 1497031605
This data as json
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1497031605 | I_kwDOAMm_X85ZOuO1 | 7377 | Aggregating a dimension using the Quantiles method with `skipna=True` is very slow | 56583917 | closed | 0 | 17 | 2022-12-14T16:52:35Z | 2024-02-07T16:28:05Z | 2024-02-07T16:28:05Z | CONTRIBUTOR | What happened?Hi all,
as the title already summarizes, I'm running into performance issues when aggregating over the time-dimension of a 3D DataArray using the quantiles method with | | | |
| --------------- | --------------- | --------------- |
| 1 | I'm currently using a compute node with 40 CPUs and 180 GB RAM. Here is what the resource utilization looks like. First small bump are 1 and 2. Second longer peak is 3. In this small example, the process at least finishes after a few seconds. With my actual dataset the quantile calculation takes hours... I guess the following issue is relevant and should be revived: https://github.com/numpy/numpy/issues/16575 Are there any possible work-arounds? What did you expect to happen?No response Minimal Complete Verifiable Example```Python import pandas as pd import numpy as np import xarray as xr Create dummy data with 20% random NaNssize_spatial = 2000 size_temporal = 20 n_nan = int(size_spatial*20.2) time = pd.date_range("2000-01-01", periods=size_temporal) lat = np.random.uniform(low=-90, high=90, size=size_spatial) lon = np.random.uniform(low=-180, high=180, size=size_spatial) data = np.random.rand(size_temporal, size_spatial, size_spatial) index_nan = np.random.choice(data.size, n_nan, replace=False) data.ravel()[index_nan] = np.nan Create DataArrayda = xr.DataArray(data=data, dims=['time', 'x', 'y'], coords={'time': time, 'x': lon, 'y': lat}, attrs={'nodata': np.nan}) Calculate 95th quantile over time-dimensionda.quantile(0.95, dim='time', skipna=True) ``` MVCE confirmation
Relevant log outputNo response Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.6 | packaged by conda-forge | (main, Aug 22 2022, 20:36:39) [GCC 10.4.0]
python-bits: 64
OS: Linux
OS-release: 5.4.0-125-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: en_US.UTF-8
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.9.0
xarray: 2022.12.0
pandas: 1.5.0
numpy: 1.23.3
scipy: 1.9.1
netCDF4: 1.6.1
pydap: None
h5netcdf: None
h5py: 3.7.0
Nio: None
zarr: None
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.3.3
cfgrib: None
iris: None
bottleneck: 1.3.5
dask: 2022.10.0
distributed: 2022.10.0
matplotlib: 3.6.1
cartopy: 0.21.0
seaborn: 0.12.0
numbagg: None
fsspec: 2022.8.2
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 65.5.0
pip: 22.3
conda: 4.12.0
pytest: None
mypy: None
IPython: 8.5.0
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7377/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | 13221727 | issue |