home / github

Menu
  • GraphQL API
  • Search all tables

issues_labels

Table actions
  • GraphQL API for issues_labels

95 rows where labels_id = 1448559775

✎ View and edit SQL

This data as json, CSV (advanced)

Link labels_id issues_id
100295585,1448559775 topic-arrays 1448559775 support for units 100295585
221858543,1448559775 topic-arrays 1448559775 Sparse arrays 221858543
299668148,1448559775 topic-arrays 1448559775 Hooks for XArray operations 299668148
309098246,1448559775 topic-arrays 1448559775 np.minimum.accumulate(da) doesn't work 309098246
411365882,1448559775 topic-arrays 1448559775 Feature request: show units in dataset overview 411365882
417356439,1448559775 topic-arrays 1448559775 NaN-sized chunks 417356439
443157666,1448559775 topic-arrays 1448559775 Picking up #1118: Do not convert subclasses of `ndarray` unless required 443157666
479434052,1448559775 topic-arrays 1448559775 DataFrame with MultiIndex -> xarray with sparse array 479434052
479942077,1448559775 topic-arrays 1448559775 How should xarray use/support sparse arrays? 479942077
482543307,1448559775 topic-arrays 1448559775 Use pytorch as backend for xarrays 482543307
484015016,1448559775 topic-arrays 1448559775 tests for arrays with units 484015016
484240082,1448559775 topic-arrays 1448559775 sparse and other duck array issues 484240082
503711327,1448559775 topic-arrays 1448559775 concat() fails when args have sparse.COO data and different fill values 503711327
517338735,1448559775 topic-arrays 1448559775 Need documentation on sparse / cupy integration 517338735
532696790,1448559775 topic-arrays 1448559775 support for units with pint 532696790
539988974,1448559775 topic-arrays 1448559775 Pint support for DataArray 539988974
589850951,1448559775 topic-arrays 1448559775 running numpy functions on xarray objects 589850951
596062033,1448559775 topic-arrays 1448559775 Consistent Handling of Type Casting Hierarchy 596062033
638947370,1448559775 topic-arrays 1448559775 writing sparse to netCDF 638947370
653430454,1448559775 topic-arrays 1448559775 Support for duck Dask Arrays 653430454
654135405,1448559775 topic-arrays 1448559775 Add cupy support 654135405
654678508,1448559775 topic-arrays 1448559775 Add initial cupy tests 654678508
659129613,1448559775 topic-arrays 1448559775 Add ability to change underlying array type 659129613
667864088,1448559775 topic-arrays 1448559775 Awkward array backend? 667864088
674445594,1448559775 topic-arrays 1448559775 push inline formatting functions upstream 674445594
675342733,1448559775 topic-arrays 1448559775 constructing nested inline reprs 675342733
683649612,1448559775 topic-arrays 1448559775 Surprising deepcopy semantics with dtype='object' 683649612
755607271,1448559775 topic-arrays 1448559775 astype method lost its order parameter 755607271
784042442,1448559775 topic-arrays 1448559775 Use apply_ufunc for unary funcs 784042442
793245791,1448559775 topic-arrays 1448559775 nbytes does not return the true size for sparse variables 793245791
818059250,1448559775 topic-arrays 1448559775 Automatic duck array testing - reductions 818059250
828805728,1448559775 topic-arrays 1448559775 Extracting `formatting_html` as a standalone library? 828805728
856172272,1448559775 topic-arrays 1448559775 Add chunks argument to {zeros/ones/empty}_like. 856172272
884649380,1448559775 topic-arrays 1448559775 Support for pandas Extension Arrays 884649380
935062144,1448559775 topic-arrays 1448559775 UserWarning when wrapping pint & dask arrays together 935062144
935317034,1448559775 topic-arrays 1448559775 Plots get labels from pint arrays 935317034
935531700,1448559775 topic-arrays 1448559775 hooks to "prepare" xarray objects for plotting 935531700
936045730,1448559775 topic-arrays 1448559775 Add to_numpy() and as_numpy() methods 936045730
936305081,1448559775 topic-arrays 1448559775 assert_equal does not handle wrapped duck arrays well 936305081
937264431,1448559775 topic-arrays 1448559775 Faster unstacking to sparse 937264431
956103236,1448559775 topic-arrays 1448559775 Duck array compatibility meeting 956103236
1020282789,1448559775 topic-arrays 1448559775 Why are `da.chunks` and `ds.chunks` properties inconsistent? 1020282789
1028755077,1448559775 topic-arrays 1448559775 Allow indexing unindexed dimensions using dask arrays 1028755077
1033884661,1448559775 topic-arrays 1448559775 Use .to_numpy() for quantified facetgrids  1033884661
1050082867,1448559775 topic-arrays 1448559775 Support Ramba distributed arrays. 1050082867
1051491070,1448559775 topic-arrays 1448559775 Added ramba to duck type. 1051491070
1307709199,1448559775 topic-arrays 1448559775 Support NumPy array API (experimental) 1307709199
1308715638,1448559775 topic-arrays 1448559775 Alternative parallel execution frameworks in xarray 1308715638
1318808368,1448559775 topic-arrays 1448559775 Bump minimum numpy version to 1.20 1318808368
1321228754,1448559775 topic-arrays 1448559775 Do we need to update AbstractArray for duck arrays? 1321228754
1332231863,1448559775 topic-arrays 1448559775 Public testing framework for duck array integration 1332231863
1333644214,1448559775 topic-arrays 1448559775 Duckarray tests for constructors and properties 1333644214
1345573285,1448559775 topic-arrays 1448559775 Enable taking the mean of dask-backed cftime arrays 1345573285
1368740629,1448559775 topic-arrays 1448559775 Generalize handling of chunked array types 1368740629
1370416843,1448559775 topic-arrays 1448559775 Remove dask_array_type checks 1370416843
1382574245,1448559775 topic-arrays 1448559775 More Array API changes 1382574245
1412019155,1448559775 topic-arrays 1448559775 Lazy Imports 1412019155
1429920838,1448559775 topic-arrays 1448559775 Some aggregate operations using the array API fail 1429920838
1445486904,1448559775 topic-arrays 1448559775 Support for Scipy Sparse Arrays 1445486904
1502721600,1448559775 topic-arrays 1448559775 Make `broadcast` and `concat` work with the Array API 1502721600
1505375386,1448559775 topic-arrays 1448559775 implement `isnull` using `full_like` instead of `zeros_like` 1505375386
1522810384,1448559775 topic-arrays 1448559775 array api - Add tests for aggregations 1522810384
1549639421,1448559775 topic-arrays 1448559775 Lint with ruff 1549639421
1573161497,1448559775 topic-arrays 1448559775 [pre-commit.ci] pre-commit autoupdate 1573161497
1575494367,1448559775 topic-arrays 1448559775 Aesara as an array backend in Xarray 1575494367
1600469223,1448559775 topic-arrays 1448559775 Support first, last with dask arrays 1600469223
1655290694,1448559775 topic-arrays 1448559775 `as_shared_dtype` converts scalars to 0d `numpy` arrays if chunked `cupy` is involved 1655290694
1692904446,1448559775 topic-arrays 1448559775 Generalize dask.delayed calls to go through ChunkManager 1692904446
1692909704,1448559775 topic-arrays 1448559775 Generalize delayed 1692909704
1695244129,1448559775 topic-arrays 1448559775 Array API fixes for astype 1695244129
1699099029,1448559775 topic-arrays 1448559775 Improve concat performance 1699099029
1716228662,1448559775 topic-arrays 1448559775 Compatibility with the Array API standard  1716228662
1722614979,1448559775 topic-arrays 1448559775 Name collision with Pulsar Timing package 'PINT'  1722614979
1738835134,1448559775 topic-arrays 1448559775 `xarray.rolling_window` Converts `dims` Argument from Tuple to List Causing Issues for Cupy-Xarray 1738835134
1746734270,1448559775 topic-arrays 1448559775 Test array api protocol 1746734270
1793236828,1448559775 topic-arrays 1448559775 Maximum recursion calling `np.divide` with `DataArray` as `where` argument 1793236828
1820788594,1448559775 topic-arrays 1448559775 Generalize cumulative reduction (scan) to non-dask types 1820788594
1822982776,1448559775 topic-arrays 1448559775 Possible autoray integration 1822982776
1924156612,1448559775 topic-arrays 1448559775 Use duck array ops in more places 1924156612
1944083743,1448559775 topic-arrays 1448559775 Handle numpy missing the array api function astype 1944083743
1945654275,1448559775 topic-arrays 1448559775 Move parallelcompat and chunkmanagers to NamedArray 1945654275
1962040911,1448559775 topic-arrays 1448559775 Use `opt_einsum` by default if installed. 1962040911
1966733834,1448559775 topic-arrays 1448559775 Use numbagg for `ffill` by default 1966733834
2010594399,1448559775 topic-arrays 1448559775 import from the new location of `normalize_axis_index` if possible 2010594399
2052840951,1448559775 topic-arrays 1448559775 Use `ddof=1` for `std` & `var` 2052840951
2057651682,1448559775 topic-arrays 1448559775 ddof vs correction kwargs in std/var 2057651682
2073024461,1448559775 topic-arrays 1448559775 `DataArray.mean()` and `Dataset.mean()` fail with `sparse==0.15.0` 2073024461
2099530269,1448559775 topic-arrays 1448559775 Error when broadcasting array API compliant class 2099530269
2099591300,1448559775 topic-arrays 1448559775 Error using vectorized indexing with array API compliant class 2099591300
2120030667,1448559775 topic-arrays 1448559775 Only use CopyOnWriteArray wrapper on BackendArrays 2120030667
2120340151,1448559775 topic-arrays 1448559775 Avoid coercing to numpy in `as_shared_dtypes` 2120340151
2125478394,1448559775 topic-arrays 1448559775 (feat): Support for `pandas` `ExtensionArray` 2125478394
2128501296,1448559775 topic-arrays 1448559775 A basic default ChunkManager for arrays that report their own chunks 2128501296
2187105705,1448559775 topic-arrays 1448559775 Missing array-api support for some stats functions? 2187105705
2194953062,1448559775 topic-arrays 1448559775 array api-related upstream-dev failures 2194953062

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues_labels] (
   [labels_id] INTEGER REFERENCES [labels]([id]),
   [issues_id] INTEGER REFERENCES [issues]([id]),
   PRIMARY KEY ([issues_id], [labels_id])
);
CREATE INDEX [idx_issues_labels_issues_id]
    ON [issues_labels] ([issues_id]);
CREATE INDEX [idx_issues_labels_labels_id]
    ON [issues_labels] ([labels_id]);
Powered by Datasette · Queries took 327.367ms · About: xarray-datasette