home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

31 rows where author_association = "NONE" and user = 10137 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: issue_url, reactions, created_at (date), updated_at (date)

issue 13

  • From pandas to xarray without blowing up memory 6
  • Add option “engine” 5
  • xr.open_dataset(url) gives NetCDF4 (lru_cache.py) error "oc_open: Could not read url" 4
  • AttributeError: '<class 'pydap.model.GridType'>' object has no attribute 'shape' 3
  • IndexError when accesing a data variable through a PydapDataStore 3
  • Matrix cross product in xarray 2
  • HDF error when trying to write Dataset read with rasterio to NetCDF 2
  • asarray Compatibility 1
  • Add h5netcdf to the engine import hierarchy 1
  • NaN values for variables when converting from a pandas dataframe to xarray.DataSet 1
  • selecting only october to march from monthly data using xarray 1
  • open_mfdataset - different behavior with dask.distributed.LocalCluster 1
  • xarray.open_rasterio 1

user 1

  • ghost · 31 ✖

author_association 1

  • NONE · 31 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
1180507258 https://github.com/pydata/xarray/issues/6766#issuecomment-1180507258 https://api.github.com/repos/pydata/xarray/issues/6766 IC_kwDOAMm_X85GXRx6 ghost 10137 2022-07-11T14:49:09Z 2022-07-11T14:49:09Z NONE

okay thank you, started issue at: https://github.com/Unidata/netcdf-c/issues/2459

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xr.open_dataset(url) gives NetCDF4 (lru_cache.py) error "oc_open: Could not read url" 1299316581
1180470141 https://github.com/pydata/xarray/issues/6766#issuecomment-1180470141 https://api.github.com/repos/pydata/xarray/issues/6766 IC_kwDOAMm_X85GXIt9 ghost 10137 2022-07-11T14:18:54Z 2022-07-11T14:18:54Z NONE

Or maybe I should add to this issue https://github.com/Unidata/netcdf4-python/issues/812 rather than starting a new one? Guidance welcome thanks.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xr.open_dataset(url) gives NetCDF4 (lru_cache.py) error "oc_open: Could not read url" 1299316581
1180462733 https://github.com/pydata/xarray/issues/6766#issuecomment-1180462733 https://api.github.com/repos/pydata/xarray/issues/6766 IC_kwDOAMm_X85GXG6N ghost 10137 2022-07-11T14:12:54Z 2022-07-11T14:12:54Z NONE

Thanks for these suggestions, very helpful. See below, for details, but as far as I can tell it looks like: * my conda env ("EQ") has the same curl, libcurl, ca-certificates, and certifi as your system. * the ncdump commands gives same error (as netcdf4 and xarray).

I should post an issue at netcdf4, correct?

``` (EQ) PS C:\Users\Codiga_D> conda list curl

packages in environment at C:\Users\Codiga_D\AppData\Local\Continuum\miniconda3\envs\EQ:

Name Version Build Channel

curl 7.83.1 h789b8ee_0 conda-forge libcurl 7.83.1 h789b8ee_0 conda-forge

(EQ) PS C:\Users\Codiga_D> conda list certifi

packages in environment at C:\Users\Codiga_D\AppData\Local\Continuum\miniconda3\envs\EQ:

Name Version Build Channel

ca-certificates 2022.6.15 h5b45459_0 conda-forge certifi 2022.6.15 py37h03978a9_0 conda-forge

(EQ) PS C:\Users\Codiga_D> ncdump -h http://psl.noaa.gov/thredds/dodsC/Datasets/NARR/monolevel/uwnd.10m.2000.nc Error:curl error: SSL connect error curl error details: Warning:oc_open: Could not read url C:\Users\Codiga_D\AppData\Local\Continuum\miniconda3\envs\EQ\Library\bin\ncdump.exe: http://psl.noaa.gov/thredds/dodsC/Datasets/NARR/monolevel/uwnd.10m.2000.nc: NetCDF: I/O failure ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xr.open_dataset(url) gives NetCDF4 (lru_cache.py) error "oc_open: Could not read url" 1299316581
1179305426 https://github.com/pydata/xarray/issues/6766#issuecomment-1179305426 https://api.github.com/repos/pydata/xarray/issues/6766 IC_kwDOAMm_X85GSsXS ghost 10137 2022-07-08T19:36:39Z 2022-07-08T19:36:39Z NONE

Thanks for the quick response. Result from xr.show_versions()is below. I tried netCDF4.Dataset(url)and it gave the same error.

Just a thought: I still wonder if this could be related to certification... which is something that did change on my system recently. I looked for information as to where netCDF4 would check for its certificate chain, but wasn't able to find something useful so far.

INSTALLED VERSIONS

commit: None python: 3.7.12 | packaged by conda-forge | (default, Oct 26 2021, 05:37:49) [MSC v.1916 64 bit (AMD64)] python-bits: 64 OS: Windows OS-release: 10 machine: AMD64 processor: Intel64 Family 6 Model 158 Stepping 10, GenuineIntel byteorder: little LC_ALL: None LANG: en LOCALE: (None, None) libhdf5: 1.12.1 libnetcdf: 4.8.1

xarray: 0.20.2 pandas: 1.3.5 numpy: 1.21.6 scipy: 1.7.3 netCDF4: 1.6.0 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.6.1 nc_time_axis: None PseudoNetCDF: None rasterio: 1.2.10 cfgrib: 0.9.10.1 iris: None bottleneck: 1.3.4 dask: None distributed: None matplotlib: 3.5.2 cartopy: 0.20.2 seaborn: 0.11.2 numbagg: None fsspec: None cupy: None pint: None sparse: None setuptools: 59.8.0 pip: 22.1.2 conda: None pytest: None IPython: 7.33.0 sphinx: 4.3.2

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xr.open_dataset(url) gives NetCDF4 (lru_cache.py) error "oc_open: Could not read url" 1299316581
879827498 https://github.com/pydata/xarray/issues/3124#issuecomment-879827498 https://api.github.com/repos/pydata/xarray/issues/3124 MDEyOklzc3VlQ29tbWVudDg3OTgyNzQ5OA== ghost 10137 2021-07-14T11:54:10Z 2021-07-14T11:56:46Z NONE

@dcherian, @spencerkclark , and @mada0007 Could u plz tell me that how to join that data after selecting Oct-March. Basically, I want to say whenever I am plotting a time series of this selected monthly data. My time time series is not continuous. Kindly plz let me know. I am attaching a plot for the reference. Example.pdf

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  selecting only october to march from monthly data using xarray 467814673
863119738 https://github.com/pydata/xarray/issues/5434#issuecomment-863119738 https://api.github.com/repos/pydata/xarray/issues/5434 MDEyOklzc3VlQ29tbWVudDg2MzExOTczOA== ghost 10137 2021-06-17T10:20:46Z 2021-06-17T10:26:12Z NONE

Sorry for late response. I was trying to read a big geotif file as follows. import xarray as xr xds = xr.open_rasterio(geotif_file)

My task was to array indexing and to save output into disk.

columns = [8,9,7,100,1050,......, 9000] rows = [18,19,17,1100,1105,......, 9100]

data = xds.isel(x=xr.DataArray(columns), y=xr.DataArray(rows))

np.save('output.npy', data)

Unfortunately, the performance in terms of time requirement seems quite unsatisfactory.

When I saw docs on xr.open_rasterio(), it mentions it is an experimental now. So, I'm curious if it could be much faster when it becomes stable.

I look forward to see it as stable version. Thank you so much.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray.open_rasterio 910844095
573192307 https://github.com/pydata/xarray/issues/3684#issuecomment-573192307 https://api.github.com/repos/pydata/xarray/issues/3684 MDEyOklzc3VlQ29tbWVudDU3MzE5MjMwNw== ghost 10137 2020-01-10T20:25:53Z 2020-01-10T21:03:28Z NONE

Each individual dataset opens successfully.

```python

rslt = xr.open_dataset('D:\dasktest\data_dir\EM2040\converted\test\test4.nc') rslt <xarray.Dataset> Dimensions: (beams: 250, sectors: 3, time: 1000) Coordinates: * time (time) int32 4000 4001 4002 4003 4004 ... 4996 4997 4998 4999 * sectors (sectors) object '40107_0_260000' ... '40107_2_290000' * beams (beams) int32 0 1 2 3 4 5 6 7 ... 243 244 245 246 247 248 249 Data variables: soundspeed (time, sectors, beams) float64 ... rslt.soundspeed.compute() <xarray.DataArray 'soundspeed' (time: 1000, sectors: 3, beams: 250)> array([[[ 1.44506928e+00, -1.51871078e+00, -3.23406027e+00, ..., -3.23209458e+00, 1.51651459e+00, 6.42639524e-01], [ 4.50549891e-01, -1.65891239e-01, 5.03328065e-01, ..., 2.90603391e-02, -2.03399058e+00, 1.07384206e+00], [ 1.10102985e+00, -1.04792461e-01, 5.01006754e-01, ..., -6.85958163e-01, -6.03574819e-01, 3.82282291e-01]],

   [[ 1.84926818e-01,  9.15722054e-02, -1.21527347e+00, ...,
     -5.01625941e-01, -1.81885721e+00,  5.06066650e-01],
    [ 1.15374575e+00, -7.46658574e-01, -6.06853717e-01, ...,
     -1.91083642e+00,  1.82612868e-01, -1.75664446e+00],
    [ 5.15672540e-01, -6.77122781e-01, -1.52097291e+00, ...,
      1.20734955e+00, -4.89001010e-02,  1.62015033e+00]],

   [[ 1.21801104e-01, -4.34477805e-01, -1.34871232e+00, ...,
     -1.24627225e+00,  5.74698640e-01,  1.14271464e+00],
    [ 4.67490848e-01,  1.16150690e+00, -9.00648837e-01, ...,
     -1.48880232e+00, -1.41956820e-02, -8.61839051e-01],
    [-1.04143082e-01, -3.48620768e-01,  2.55312206e-01, ...,
      4.37058964e-01,  4.46445888e-01, -4.10217694e-01]],

   ...,

   [[ 1.61535162e+00,  1.74216005e-01, -3.09371662e+00, ...,
      1.26629794e+00, -9.18653539e-01, -2.37142082e+00],
    [-4.38608161e-02,  1.32472408e+00,  3.92494217e-01, ...,
     -1.03977601e+00, -1.87358228e+00,  1.71303085e+00],
    [ 1.40801908e-01, -4.85799815e-01, -4.28494910e-01, ...,
      5.88979031e-01, -3.16616983e-01, -4.03942439e-01]],

   [[-1.25221965e+00,  1.40617329e+00,  3.81911399e+00, ...,
     -1.41840680e+00, -8.81194686e-01,  2.24217335e+00],
    [-1.04704250e+00,  6.58982192e-01,  4.30801840e-01, ...,
      1.36966939e+00,  1.51575602e+00, -6.29969352e-01],
    [ 2.11058905e-01,  1.05525622e+00, -1.29686045e-01, ...,
     -1.33221475e+00,  1.74849717e-01,  2.15998814e+00]],

   [[-7.33979313e-02,  2.61711631e-01,  1.02465836e+00, ...,
      3.64389987e-01, -1.20189741e+00,  3.39280076e-01],
    [-4.03723405e-01, -2.21631345e+00, -9.94534629e-01, ...,
     -5.07692651e-01, -1.81561305e+00, -1.23491815e+00],
    [-6.36790749e-01, -8.00208607e-02,  5.46987721e-01, ...,
     -2.25807078e-03,  1.59638267e-01, -1.29816760e+00]]])

Coordinates: * time (time) int32 4000 4001 4002 4003 4004 ... 4995 4996 4997 4998 4999 * sectors (sectors) object '40107_0_260000' '40107_1_320000' '40107_2_290000' * beams (beams) int32 0 1 2 3 4 5 6 7 8 ... 242 243 244 245 246 247 248 249

cl <Client: 'tcp://127.0.0.1:59016' processes=4 threads=16, memory=34.27 GB> ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  open_mfdataset - different behavior with dask.distributed.LocalCluster 548263148
501302890 https://github.com/pydata/xarray/issues/3007#issuecomment-501302890 https://api.github.com/repos/pydata/xarray/issues/3007 MDEyOklzc3VlQ29tbWVudDUwMTMwMjg5MA== ghost 10137 2019-06-12T14:36:44Z 2019-06-12T14:36:44Z NONE

I know what "NaN" means. I was hoping that by transforming the dataset into a dataframe and then returning back, the dataset variables would recover its original shape.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  NaN values for variables when converting from a pandas dataframe to xarray.DataSet 454073421
445939304 https://github.com/pydata/xarray/issues/2535#issuecomment-445939304 https://api.github.com/repos/pydata/xarray/issues/2535 MDEyOklzc3VlQ29tbWVudDQ0NTkzOTMwNA== ghost 10137 2018-12-10T19:23:14Z 2018-12-10T19:23:14Z NONE

It seems that this is not a problem with xarray but only with rasterio and netCDF4. Also this fails: ```python import rasterio import netCDF4

with netCDF4.Dataset('test.nc', mode='w') as ds: ds.createDimension('x') ds.createVariable('foo', float, dimensions=('x')) print(ds) `` Commenting outimport rasterio` removes the HDF error. I’ll report this to rasterio.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  HDF error when trying to write Dataset read with rasterio to NetCDF 376389539
443840119 https://github.com/pydata/xarray/issues/2535#issuecomment-443840119 https://api.github.com/repos/pydata/xarray/issues/2535 MDEyOklzc3VlQ29tbWVudDQ0Mzg0MDExOQ== ghost 10137 2018-12-03T19:33:17Z 2018-12-03T19:33:17Z NONE

I have similar problem, when importing rasterio in the same script (not even using it for anything). This fails with HDF error:

import xarray as xa
import numpy as np
#import netCDF4
import rasterio

ds = xa.Dataset()
ds['z'] = (('y', 'x'), np.zeros((100, 100), np.float32))
print(ds)
ds.to_netcdf('test.nc')
ds.close()

with xa.open_dataset('test.nc') as ds:
    print(ds)

If I import netCDF4 before rasterio it works fine (uncomment line 3). This is probably an issue with rasterio somehow.

I installed everything with pip:

$ pip install Cython
$ pip install netCDF4 xarray rasterio numpy

From pip freeze:

affine==2.2.1
attrs==18.2.0
cftime==1.0.3
Click==7.0
click-plugins==1.0.4
cligj==0.5.0
Cython==0.29.1
netCDF4==1.4.2
numpy==1.15.4
pandas==0.23.4
pyparsing==2.3.0
python-dateutil==2.7.5
pytz==2018.7
rasterio==1.0.11
six==1.11.0
snuggs==1.4.2
xarray==0.11.0
{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  HDF error when trying to write Dataset read with rasterio to NetCDF 376389539
389622523 https://github.com/pydata/xarray/issues/2139#issuecomment-389622523 https://api.github.com/repos/pydata/xarray/issues/2139 MDEyOklzc3VlQ29tbWVudDM4OTYyMjUyMw== ghost 10137 2018-05-16T18:37:24Z 2018-05-16T18:37:24Z NONE

Does that sound like it will play well with GeoViews if I want widgets for the categorical vars?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  From pandas to xarray without blowing up memory 323703742
389622155 https://github.com/pydata/xarray/issues/2139#issuecomment-389622155 https://api.github.com/repos/pydata/xarray/issues/2139 MDEyOklzc3VlQ29tbWVudDM4OTYyMjE1NQ== ghost 10137 2018-05-16T18:36:17Z 2018-05-16T18:36:17Z NONE

Ok. Looks like the way forward is a netCDF file for each level of my categorical variables. Will give it a shot.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  From pandas to xarray without blowing up memory 323703742
389618279 https://github.com/pydata/xarray/issues/2139#issuecomment-389618279 https://api.github.com/repos/pydata/xarray/issues/2139 MDEyOklzc3VlQ29tbWVudDM4OTYxODI3OQ== ghost 10137 2018-05-16T18:24:02Z 2018-05-16T18:24:02Z NONE

@shoyer Thank you. Does metacsv look likely to work to you? It has attracted almost no attention so I wonder if it will exhaust memory. I'm kind of surprised this path (csv -> xarray) isn't better fleshed out as I would have expected it to be very common, perhaps the most common esp. for "found data."

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  From pandas to xarray without blowing up memory 323703742
389596244 https://github.com/pydata/xarray/issues/2139#issuecomment-389596244 https://api.github.com/repos/pydata/xarray/issues/2139 MDEyOklzc3VlQ29tbWVudDM4OTU5NjI0NA== ghost 10137 2018-05-16T17:13:11Z 2018-05-16T17:13:11Z NONE

This looks potentially helpful http://metacsv.readthedocs.io/en/latest/

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  From pandas to xarray without blowing up memory 323703742
389592602 https://github.com/pydata/xarray/issues/2139#issuecomment-389592602 https://api.github.com/repos/pydata/xarray/issues/2139 MDEyOklzc3VlQ29tbWVudDM4OTU5MjYwMg== ghost 10137 2018-05-16T17:01:37Z 2018-05-16T17:01:37Z NONE

PS: I started with Dask but haven't found a way to go from Dask to xarray.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  From pandas to xarray without blowing up memory 323703742
389592243 https://github.com/pydata/xarray/issues/2139#issuecomment-389592243 https://api.github.com/repos/pydata/xarray/issues/2139 MDEyOklzc3VlQ29tbWVudDM4OTU5MjI0Mw== ghost 10137 2018-05-16T17:00:24Z 2018-05-16T17:00:24Z NONE

Hi @jhamman The original data is literally just a flat csv file with ie: lat,lon,epoch,cat1,cat2,var1,var2,...,var50 with 1 billion rows.

I'm looking to xarray for GeoViews, which I think would benefit from having the data properly grouped/indexed by its categories

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  From pandas to xarray without blowing up memory 323703742
364970290 https://github.com/pydata/xarray/pull/1683#issuecomment-364970290 https://api.github.com/repos/pydata/xarray/issues/1683 MDEyOklzc3VlQ29tbWVudDM2NDk3MDI5MA== ghost 10137 2018-02-12T16:06:44Z 2018-02-12T16:06:44Z NONE

Closing. Superseded by #1682.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add h5netcdf to the engine import hierarchy 270701183
360970213 https://github.com/pydata/xarray/issues/1860#issuecomment-360970213 https://api.github.com/repos/pydata/xarray/issues/1860 MDEyOklzc3VlQ29tbWVudDM2MDk3MDIxMw== ghost 10137 2018-01-27T08:41:10Z 2018-01-27T08:41:10Z NONE

This was fixed through https://github.com/pydap/pydap/pull/159! Thank you.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  IndexError when accesing a data variable through a PydapDataStore 291926319
360969685 https://github.com/pydata/xarray/issues/1860#issuecomment-360969685 https://api.github.com/repos/pydata/xarray/issues/1860 MDEyOklzc3VlQ29tbWVudDM2MDk2OTY4NQ== ghost 10137 2018-01-27T08:29:52Z 2018-01-27T08:29:52Z NONE

The method pydap.model.BaseType._get_data_index(self, index=Ellipsis) gets value 'tlml' for index. It tries to return self._data[index], but self._data is a numpy.ndarray. Hence the IndexError.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  IndexError when accesing a data variable through a PydapDataStore 291926319
360807708 https://github.com/pydata/xarray/issues/1860#issuecomment-360807708 https://api.github.com/repos/pydata/xarray/issues/1860 MDEyOklzc3VlQ29tbWVudDM2MDgwNzcwOA== ghost 10137 2018-01-26T15:01:55Z 2018-01-26T15:01:55Z NONE

For some reason, the name of the variable at some point becomes 'tlml.tlml'. Method pydap.model.StructureType._getitem_string would work fine if the name was just 'tlml'. Maybe this is related to https://github.com/pydap/pydap/issues/121?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  IndexError when accesing a data variable through a PydapDataStore 291926319
360782142 https://github.com/pydata/xarray/issues/1857#issuecomment-360782142 https://api.github.com/repos/pydata/xarray/issues/1857 MDEyOklzc3VlQ29tbWVudDM2MDc4MjE0Mg== ghost 10137 2018-01-26T13:18:10Z 2018-01-26T13:18:10Z NONE

Thanks for the suggestion! Installing both latest master of xarray (0092911) and latest master of pydap (4ae73e3) fixed this issue, and now I can open the dataset.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  AttributeError: '<class 'pydap.model.GridType'>' object has no attribute 'shape' 291524555
360468449 https://github.com/pydata/xarray/issues/1857#issuecomment-360468449 https://api.github.com/repos/pydata/xarray/issues/1857 MDEyOklzc3VlQ29tbWVudDM2MDQ2ODQ0OQ== ghost 10137 2018-01-25T13:37:37Z 2018-01-25T13:37:37Z NONE

After pulling (Git says ‘Already up-to-date.’), my xarray version (xarray.__version__) is still '0.10.0+dev44.g0a0593d'. What version are you using?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  AttributeError: '<class 'pydap.model.GridType'>' object has no attribute 'shape' 291524555
360461190 https://github.com/pydata/xarray/issues/1857#issuecomment-360461190 https://api.github.com/repos/pydata/xarray/issues/1857 MDEyOklzc3VlQ29tbWVudDM2MDQ2MTE5MA== ghost 10137 2018-01-25T13:06:15Z 2018-01-25T13:06:15Z NONE

Same thing: ``` Traceback (most recent call last): File "C:\Anaconda3\envs\xa_test\lib\site-packages\pydap\model.py", line 295, in getattr return self[attr] File "C:\Anaconda3\envs\xa_test\lib\site-packages\pydap\model.py", line 556, in getitem return StructureType.getitem(self, key) File "C:\Anaconda3\envs\xa_test\lib\site-packages\pydap\model.py", line 326, in getitem return self._dict[key] KeyError: 'shape'

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "C:\Anaconda3\envs\xa_test\lib\site-packages\pydap\model.py", line 180, in getattr return self.attributes[attr] KeyError: 'shape'

During handling of the above exception, another exception occurred:

Traceback (most recent call last): File "<stdin>", line 1, in <module> File "c:\src\xarray\xarray\backends\api.py", line 305, in open_dataset return maybe_decode_store(store, lock) File "c:\src\xarray\xarray\backends\api.py", line 225, in maybe_decode_store drop_variables=drop_variables) File "c:\src\xarray\xarray\conventions.py", line 598, in decode_cf vars, attrs = obj.load() File "c:\src\xarray\xarray\backends\common.py", line 133, in load for k, v in self.get_variables().items()) File "c:\src\xarray\xarray\backends\pydap_.py", line 85, in get_variables for k in self.ds.keys()) File "c:\src\xarray\xarray\core\utils.py", line 309, in FrozenOrderedDict return Frozen(OrderedDict(args, *kwargs)) File "c:\src\xarray\xarray\backends\pydap_.py", line 85, in <genexpr> for k in self.ds.keys()) File "c:\src\xarray\xarray\backends\pydap_.py", line 79, in open_store_variable data = indexing.LazilyIndexedArray(PydapArrayWrapper(var)) File "c:\src\xarray\xarray\core\indexing.py", line 482, in init key = BasicIndexer((slice(None),) * array.ndim) File "c:\src\xarray\xarray\core\utils.py", line 428, in ndim return len(self.shape) File "c:\src\xarray\xarray\backends\pydap_.py", line 20, in shape return self.array.shape File "C:\Anaconda3\envs\xa_test\lib\site-packages\pydap\model.py", line 297, in getattr return DapType.getattr(self, attr) File "C:\Anaconda3\envs\xa_test\lib\site-packages\pydap\model.py", line 184, in getattr % (self.class, attr)) AttributeError: '<class 'pydap.model.GridType'>' object has no attribute 'shape' ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  AttributeError: '<class 'pydap.model.GridType'>' object has no attribute 'shape' 291524555
355678395 https://github.com/pydata/xarray/pull/1682#issuecomment-355678395 https://api.github.com/repos/pydata/xarray/issues/1682 MDEyOklzc3VlQ29tbWVudDM1NTY3ODM5NQ== ghost 10137 2018-01-05T22:07:03Z 2018-01-05T22:07:03Z NONE

Now that the tests are passing again, is there anything else left to change?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add option “engine” 270677100
351810655 https://github.com/pydata/xarray/pull/1682#issuecomment-351810655 https://api.github.com/repos/pydata/xarray/issues/1682 MDEyOklzc3VlQ29tbWVudDM1MTgxMDY1NQ== ghost 10137 2017-12-14T19:25:03Z 2017-12-14T19:25:03Z NONE

I've refactored setting the I/O engine option as per our discussion. Hopefully, it captures now all the requested functionality.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add option “engine” 270677100
347917241 https://github.com/pydata/xarray/pull/1682#issuecomment-347917241 https://api.github.com/repos/pydata/xarray/issues/1682 MDEyOklzc3VlQ29tbWVudDM0NzkxNzI0MQ== ghost 10137 2017-11-29T16:32:56Z 2017-11-29T16:32:56Z NONE

Let's see if we can get this PR over the line... 😄

A list of engines would need some way of declaring their I/O capabilities: only file-based, only HTTP-based, or both. Something like:

```python io_engines = [ {'engine': 'netcdf4', 'capabilities': ['file', 'http']},

{'engine': 'pydap', 
 'capabilities': ['http']},

{'engine': 'scipy', 
 'capabilities': ['file']},

{'engine': 'h5netcdf',
 'capabilities': ['file']},

] ```

On xarray import or any time this option would change, the list of engines would be checked to remove unavailable engines.

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add option “engine” 270677100
341773389 https://github.com/pydata/xarray/pull/1682#issuecomment-341773389 https://api.github.com/repos/pydata/xarray/issues/1682 MDEyOklzc3VlQ29tbWVudDM0MTc3MzM4OQ== ghost 10137 2017-11-03T17:30:18Z 2017-11-03T17:30:18Z NONE

Yes, there could be more I/O engine options. How about file_engine and web_engine? Keeping the naming more generic as there may be other file-based formats or data web services in the future.

On the other hand, setting this global option should indicate a willingness to accept the consequences. If automatic selection of the optional I/O engine is preferred, this global option should not be set.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add option “engine” 270677100
341610428 https://github.com/pydata/xarray/pull/1682#issuecomment-341610428 https://api.github.com/repos/pydata/xarray/issues/1682 MDEyOklzc3VlQ29tbWVudDM0MTYxMDQyOA== ghost 10137 2017-11-03T02:35:14Z 2017-11-03T02:35:14Z NONE

How about io_engine for the option's name? The data can come from an OPeNDAP server as well.

I have reverted to the original engine=None in the functions/methods and use python engine = engine or OPTIONS['io_engine'] to assign the correct engine value.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add option “engine” 270677100
317472105 https://github.com/pydata/xarray/issues/1484#issuecomment-317472105 https://api.github.com/repos/pydata/xarray/issues/1484 MDEyOklzc3VlQ29tbWVudDMxNzQ3MjEwNQ== ghost 10137 2017-07-24T16:08:30Z 2017-07-24T16:08:30Z NONE

Just saw xr.DataArray.dot(). PROBLEM SOLVED.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Matrix cross product in xarray 244702576
317470340 https://github.com/pydata/xarray/issues/1484#issuecomment-317470340 https://api.github.com/repos/pydata/xarray/issues/1484 MDEyOklzc3VlQ29tbWVudDMxNzQ3MDM0MA== ghost 10137 2017-07-24T16:02:40Z 2017-07-24T16:02:40Z NONE

How do I make dot product (np.dot or pandas.dataframe.dot) between two DataArrays? X has dimensions [dim_0, dim_1, dim_2], Y has dimensions [dim0, dim3]. result should have dimensions [dim_1, dim2, dim3]. result = np.dot(X,Y) OR, result = pd.DataFrame.dot(X,Y) In both cases, error "shapes are not aligned" occurred.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Matrix cross product in xarray 244702576
116411269 https://github.com/pydata/xarray/issues/448#issuecomment-116411269 https://api.github.com/repos/pydata/xarray/issues/448 MDEyOklzc3VlQ29tbWVudDExNjQxMTI2OQ== ghost 10137 2015-06-29T03:22:52Z 2015-06-29T03:22:52Z NONE

I agree that it's the point with np.asarray, but given the implementation you'd think np.asanyarray would work. My initial takeaway (until examining the source) was that this was an ndarray with additional attributes and properties. Perhaps, I'm leaning too far towards numpy and too far away from pandas.

As background: my usage involves RF pattern data which typically involves a lot of independent variables to lug around as well as the measured data.

I'll look into your other suggestions. Thank you for your reply.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  asarray Compatibility 91676831

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 18.476ms · About: xarray-datasette