home / github / issues

Menu
  • GraphQL API
  • Search all tables

issues: 454073421

This data as json

id node_id number title user state locked assignee milestone comments created_at updated_at closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
454073421 MDU6SXNzdWU0NTQwNzM0MjE= 3007 NaN values for variables when converting from a pandas dataframe to xarray.DataSet 10137 closed 0     5 2019-06-10T09:15:21Z 2020-03-23T13:15:16Z 2020-03-23T13:15:15Z NONE      

Code Sample, a copy-pastable example if possible

```python wind_surface hurs bui fwi lat lon time
34.511383 16.467664 1971-01-10 12:00:00 29.658546 70.481293 ... 8.134300 7.409146 34.515558 16.723973 1971-01-10 12:00:00 30.896049 71.356644 ... 8.874528 8.399877 34.517359 16.852138 1971-01-10 12:00:00 31.514799 71.708603 ... 8.789351 8.763743 34.518970 16.980310 1971-01-10 12:00:00 32.105423 72.023773 ... 8.962551 9.125644 34.520391 17.108487 1971-01-10 12:00:00 32.724174 72.106110 ... 8.725038 9.249104

[5 rows x 10 columns]

In [81]: df.to_xarray()
Out[81]: <xarray.Dataset> Dimensions: (lat: 5, lon: 5, time: 1) Coordinates: * lat (lat) float64 34.51 34.52 34.52 34.52 34.52 * lon (lon) float64 16.47 16.72 16.85 16.98 17.11 * time (time) object '1971-01-10 12:00:00' Data variables: wind_surface (lat, lon, time) float64 29.658546 nan nan ... nan 32.724174 hurs (lat, lon, time) float64 70.48129 nan nan ... nan nan 72.10611 precip (lat, lon, time) float64 0.0 nan nan nan ... nan nan nan 0.0 tmax (lat, lon, time) float64 16.060822 nan nan ... nan 16.185822 ffmc (lat, lon, time) float64 83.58528 nan nan ... nan nan 84.05673 isi (lat, lon, time) float64 7.7641253 nan nan ... nan nan 9.64494 dmc (lat, lon, time) float64 6.797345 nan nan ... nan nan 7.90833 dc (lat, lon, time) float64 25.314878 nan nan ... nan 24.324644 bui (lat, lon, time) float64 8.1343 nan nan ... nan nan 8.725038 fwi (lat, lon, time) float64 7.409146 nan nan ... nan 9.2491045 ```

Problem description

Hi, I get those nan values for variables when I try to convert from a pandas.DataFrame with MultiIndex to a xarray.DataArray. The same happend if I try to build a xarray.Dataset and then unstack the multiindex as shown below:

python ds = xr.Dataset(df) ds.unstack('dim_0') <xarray.Dataset> Dimensions: (lat: 5, lon: 5, time: 1) Coordinates: * lat (lat) float64 34.51 34.52 34.52 34.52 34.52 * lon (lon) float64 16.47 16.72 16.85 16.98 17.11 * time (time) object '1971-01-10 12:00:00' Data variables: wind_surface (lat, lon, time) float32 29.658546 nan nan ... nan 32.724174 hurs (lat, lon, time) float32 70.48129 nan nan ... nan nan 72.10611 precip (lat, lon, time) float32 0.0 nan nan nan ... nan nan nan 0.0 Maybe it's not an issue. I don't know. I'm lost. Any help is welcome.

Regards

Output of xr.show_versions()

# Paste the output here xr.show_versions() here INSTALLED VERSIONS ------------------ commit: None python: 3.7.3 (default, May 9 2019, 11:55:04) [GCC 8.3.0] python-bits: 64 OS: Linux OS-release: 5.0.0-16-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.4 libnetcdf: 4.6.2 xarray: 0.12.1 pandas: 0.24.2 numpy: 1.16.3 scipy: 1.3.0 netCDF4: 1.5.2 pydap: installed h5netcdf: 0.7.3 h5py: 2.9.0 Nio: None zarr: 2.3.1 cftime: 1.0.1 nc_time_axis: 1.1.0 PseudonetCDF: None rasterio: 1.0.23 cfgrib: None iris: 2.3.0dev0 bottleneck: 1.2.1 dask: 1.2.2 distributed: None matplotlib: 3.1.0 cartopy: 0.17.1.dev168+ seaborn: 0.9.0 setuptools: 40.8.0 pip: 19.1.1 conda: None pytest: None IPython: 7.5.0 sphinx: 2.0.1
{
    "url": "https://api.github.com/repos/pydata/xarray/issues/3007/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed 13221727 issue

Links from other tables

  • 0 rows from issues_id in issues_labels
  • 5 rows from issue in issue_comments
Powered by Datasette · Queries took 0.872ms · About: xarray-datasette