home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

2 rows where author_association = "NONE" and issue = 860418546 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • Hoeze 2

issue 1

  • N-dimensional boolean indexing · 2 ✖

author_association 1

  • NONE · 2 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
844486483 https://github.com/pydata/xarray/issues/5179#issuecomment-844486483 https://api.github.com/repos/pydata/xarray/issues/5179 MDEyOklzc3VlQ29tbWVudDg0NDQ4NjQ4Mw== Hoeze 1200058 2021-05-19T21:27:17Z 2021-05-19T21:27:17Z NONE

fyi, I updated the boolean indexing to support additional or missing dimensions: https://gist.github.com/Hoeze/96616ef9d179180b0b7de97c97e00a27 I'm using this on a 4D-array with >300GB to flatten three of the four dimensions and it works, even on 64GB of RAM.

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  N-dimensional boolean indexing  860418546
821881984 https://github.com/pydata/xarray/issues/5179#issuecomment-821881984 https://api.github.com/repos/pydata/xarray/issues/5179 MDEyOklzc3VlQ29tbWVudDgyMTg4MTk4NA== Hoeze 1200058 2021-04-17T20:22:13Z 2021-04-17T20:27:25Z NONE

@max-sixty The reason is that my method is basically a special case of point-wise indexing: http://xarray.pydata.org/en/stable/indexing.html#more-advanced-indexing You can get the same result by calling: ```python core_dim_locs = {key: value for key, value in core_dim_locs_from_cond(mask, new_dim_name="newdim")}

pointwise selection

data.sel( dim_0=outliers_subset["dim_0"], dim_1=outliers_subset["dim_1"], dim_2=outliers_subset["dim_2"] ) ``` (Note that you loose chunk information by this method, that's why it is less efficient)

When you want to select random items from a N-dimensional array, you can either model the result as some sparse array or by stacking the dimensions. (OK, stacking the dimensions means also a sparse COO encoding...)

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  N-dimensional boolean indexing  860418546

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 19.09ms · About: xarray-datasette