home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

6 rows where author_association = "CONTRIBUTOR" and user = 5852283 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: issue_url, created_at (date), updated_at (date)

issue 4

  • bottleneck : Wrong mean for float32 array 2
  • Add "errors" keyword argument to drop() and drop_dims() (#2994) 2
  • xarray .count() gives -1 when it should be 1? 1
  • Error in to_netcdf() 1

user 1

  • andrew-c-ross · 6 ✖

author_association 1

  • CONTRIBUTOR · 6 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
508833311 https://github.com/pydata/xarray/issues/3080#issuecomment-508833311 https://api.github.com/repos/pydata/xarray/issues/3080 MDEyOklzc3VlQ29tbWVudDUwODgzMzMxMQ== andrew-c-ross 5852283 2019-07-05T18:23:03Z 2019-07-05T18:23:03Z CONTRIBUTOR

I think you're right, this is nearly the same issue as #2850. Your dataset has an attribute named _NCProperties which is one of the hidden/forbidden attributes.

If I remove the attribute: del dsSel.attrs['_NCProperties']

dsSel.to_netcdf(outnc) then works for me with no errors.

You can also delete the attribute on ds instead and subsequent selections should also work.

As an aside, if I run ncdump -h https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/dodsC/birdhouse/cccs_portal/indices/Final/BCCAQv2/tg_mean/YS/rcp26/simulations/BCCAQv2+ANUSPLIN300_bcc-csm1-1_historical+rcp26_r1i1p1_1950-2100_tg_mean_YS.nc "_NCProperties" doesn't show up in the attributes, but I assume this is because ncdump hides it and not because it gets added by xarray or netcdf4. If that's not the case it could be a bug in xarray or netcdf4.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Error in to_netcdf() 464315727
504078924 https://github.com/pydata/xarray/pull/3028#issuecomment-504078924 https://api.github.com/repos/pydata/xarray/issues/3028 MDEyOklzc3VlQ29tbWVudDUwNDA3ODkyNA== andrew-c-ross 5852283 2019-06-20T15:46:59Z 2019-06-20T15:46:59Z CONTRIBUTOR

Sounds great. Thanks for making this a smooth and well documented process for new contributors

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add "errors" keyword argument to drop() and drop_dims() (#2994) 456971151
503553184 https://github.com/pydata/xarray/pull/3028#issuecomment-503553184 https://api.github.com/repos/pydata/xarray/issues/3028 MDEyOklzc3VlQ29tbWVudDUwMzU1MzE4NA== andrew-c-ross 5852283 2019-06-19T13:08:41Z 2019-06-19T13:08:41Z CONTRIBUTOR

I have to say as someone who is probably an average user, inconsistencies between related projects, like xarray/pandas or matplotlib/seaborn, drive me nuts. But I also agree that missing= is more descriptive, and if we were starting from scratch I would totally support that. So I will defer to the maintainers here.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add "errors" keyword argument to drop() and drop_dims() (#2994) 456971151
464088384 https://github.com/pydata/xarray/issues/2770#issuecomment-464088384 https://api.github.com/repos/pydata/xarray/issues/2770 MDEyOklzc3VlQ29tbWVudDQ2NDA4ODM4NA== andrew-c-ross 5852283 2019-02-15T15:22:48Z 2019-02-15T15:22:48Z CONTRIBUTOR

I can reproduce OP when the coordinate is a datetime64, but the problem does not occur with int64s (or float64s).

datetime coordinate: ``` In [1]: import xarray

In [2]: xarray.version Out[2]: '0.11.2'

In [3]: import datetime as dt

In [4]: da = xarray.DataArray([0], coords=[('time', [dt.datetime(1979, 1, 1)])])

In [5]: da.isel(time=0).time.count() Out[5]: <xarray.DataArray 'time' ()> array(-1) Coordinates: time datetime64[ns] 1979-01-01 ```

int coordinate:

``` In [6]: da = xarray.DataArray([0], coords=[('time', [0])])

In [7]: da.isel(time=0).time.count() Out[7]: <xarray.DataArray 'time' ()> array(1) Coordinates: time int64 0 ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  xarray .count() gives -1 when it should be 1?  409906674
290755867 https://github.com/pydata/xarray/issues/1346#issuecomment-290755867 https://api.github.com/repos/pydata/xarray/issues/1346 MDEyOklzc3VlQ29tbWVudDI5MDc1NTg2Nw== andrew-c-ross 5852283 2017-03-31T16:07:56Z 2017-03-31T16:07:56Z CONTRIBUTOR

I think this might be a problem with bottleneck? My interpretation of _create_nan_agg_method in xarray/core/ops.py is that it may use bottleneck to get the mean unless you pass skipna=False or specify multiple axes. And,

```python In [2]: import bottleneck In [3]: bottleneck.version Out[3]: '1.2.0'

In [6]: bottleneck.nanmean(ds.var167.data) Out[6]: 261.6441345214844 ```

Forgive me if I'm wrong, I'm still a bit new.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  bottleneck : Wrong mean for float32 array 218459353
290747253 https://github.com/pydata/xarray/issues/1346#issuecomment-290747253 https://api.github.com/repos/pydata/xarray/issues/1346 MDEyOklzc3VlQ29tbWVudDI5MDc0NzI1Mw== andrew-c-ross 5852283 2017-03-31T15:38:12Z 2017-03-31T15:53:07Z CONTRIBUTOR

Also on macOS, and I can reproduce.

Using python 2.7.11, xarray 0.9.1, dask 0.14.1 installed through Anaconda. I get the same results with xarray 0.9.1-38-gc0178b7 from GitHub.

```python In [3]: ds = xarray.open_dataset('ERAIN-t2m-1983-2012.seasmean.nc')

In [4]: ds.var167.mean() Out[4]: <xarray.DataArray 'var167' ()> array(261.6441345214844, dtype=float32) ```

Curiously, I get the right results with skipna=False...

python In [10]: ds.var167.mean(skipna=False) Out[10]: <xarray.DataArray 'var167' ()> array(278.6246643066406, dtype=float32)

... or by specifying coordinates to average over:

python In [5]: ds.var167.mean(('time', 'lat', 'lon')) Out[5]: <xarray.DataArray 'var167' ()> array(278.6246643066406, dtype=float32)

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  bottleneck : Wrong mean for float32 array 218459353

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 14.336ms · About: xarray-datasette