issue_comments
6 rows where user = 5852283 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, created_at (date), updated_at (date)
user 1
- andrew-c-ross · 6 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 508833311 | https://github.com/pydata/xarray/issues/3080#issuecomment-508833311 | https://api.github.com/repos/pydata/xarray/issues/3080 | MDEyOklzc3VlQ29tbWVudDUwODgzMzMxMQ== | andrew-c-ross 5852283 | 2019-07-05T18:23:03Z | 2019-07-05T18:23:03Z | CONTRIBUTOR | I think you're right, this is nearly the same issue as #2850. Your dataset has an attribute named _NCProperties which is one of the hidden/forbidden attributes. If I remove the attribute:
You can also delete the attribute on As an aside, if I run
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Error in to_netcdf() 464315727 | |
| 504078924 | https://github.com/pydata/xarray/pull/3028#issuecomment-504078924 | https://api.github.com/repos/pydata/xarray/issues/3028 | MDEyOklzc3VlQ29tbWVudDUwNDA3ODkyNA== | andrew-c-ross 5852283 | 2019-06-20T15:46:59Z | 2019-06-20T15:46:59Z | CONTRIBUTOR | Sounds great. Thanks for making this a smooth and well documented process for new contributors |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Add "errors" keyword argument to drop() and drop_dims() (#2994) 456971151 | |
| 503553184 | https://github.com/pydata/xarray/pull/3028#issuecomment-503553184 | https://api.github.com/repos/pydata/xarray/issues/3028 | MDEyOklzc3VlQ29tbWVudDUwMzU1MzE4NA== | andrew-c-ross 5852283 | 2019-06-19T13:08:41Z | 2019-06-19T13:08:41Z | CONTRIBUTOR | I have to say as someone who is probably an average user, inconsistencies between related projects, like xarray/pandas or matplotlib/seaborn, drive me nuts. But I also agree that |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Add "errors" keyword argument to drop() and drop_dims() (#2994) 456971151 | |
| 464088384 | https://github.com/pydata/xarray/issues/2770#issuecomment-464088384 | https://api.github.com/repos/pydata/xarray/issues/2770 | MDEyOklzc3VlQ29tbWVudDQ2NDA4ODM4NA== | andrew-c-ross 5852283 | 2019-02-15T15:22:48Z | 2019-02-15T15:22:48Z | CONTRIBUTOR | I can reproduce OP when the coordinate is a datetime64, but the problem does not occur with int64s (or float64s). datetime coordinate: ``` In [1]: import xarray In [2]: xarray.version Out[2]: '0.11.2' In [3]: import datetime as dt In [4]: da = xarray.DataArray([0], coords=[('time', [dt.datetime(1979, 1, 1)])]) In [5]: da.isel(time=0).time.count() Out[5]: <xarray.DataArray 'time' ()> array(-1) Coordinates: time datetime64[ns] 1979-01-01 ``` int coordinate: ``` In [6]: da = xarray.DataArray([0], coords=[('time', [0])]) In [7]: da.isel(time=0).time.count() Out[7]: <xarray.DataArray 'time' ()> array(1) Coordinates: time int64 0 ``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray .count() gives -1 when it should be 1? 409906674 | |
| 290755867 | https://github.com/pydata/xarray/issues/1346#issuecomment-290755867 | https://api.github.com/repos/pydata/xarray/issues/1346 | MDEyOklzc3VlQ29tbWVudDI5MDc1NTg2Nw== | andrew-c-ross 5852283 | 2017-03-31T16:07:56Z | 2017-03-31T16:07:56Z | CONTRIBUTOR | I think this might be a problem with bottleneck? My interpretation of _create_nan_agg_method in xarray/core/ops.py is that it may use bottleneck to get the mean unless you pass skipna=False or specify multiple axes. And, ```python In [2]: import bottleneck In [3]: bottleneck.version Out[3]: '1.2.0' In [6]: bottleneck.nanmean(ds.var167.data) Out[6]: 261.6441345214844 ``` Forgive me if I'm wrong, I'm still a bit new. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
bottleneck : Wrong mean for float32 array 218459353 | |
| 290747253 | https://github.com/pydata/xarray/issues/1346#issuecomment-290747253 | https://api.github.com/repos/pydata/xarray/issues/1346 | MDEyOklzc3VlQ29tbWVudDI5MDc0NzI1Mw== | andrew-c-ross 5852283 | 2017-03-31T15:38:12Z | 2017-03-31T15:53:07Z | CONTRIBUTOR | Also on macOS, and I can reproduce. Using python 2.7.11, xarray 0.9.1, dask 0.14.1 installed through Anaconda. I get the same results with xarray 0.9.1-38-gc0178b7 from GitHub. ```python In [3]: ds = xarray.open_dataset('ERAIN-t2m-1983-2012.seasmean.nc') In [4]: ds.var167.mean() Out[4]: <xarray.DataArray 'var167' ()> array(261.6441345214844, dtype=float32) ``` Curiously, I get the right results with skipna=False...
... or by specifying coordinates to average over:
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
bottleneck : Wrong mean for float32 array 218459353 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
issue 4