issue_comments: 290755867
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/1346#issuecomment-290755867 | https://api.github.com/repos/pydata/xarray/issues/1346 | 290755867 | MDEyOklzc3VlQ29tbWVudDI5MDc1NTg2Nw== | 5852283 | 2017-03-31T16:07:56Z | 2017-03-31T16:07:56Z | CONTRIBUTOR | I think this might be a problem with bottleneck? My interpretation of _create_nan_agg_method in xarray/core/ops.py is that it may use bottleneck to get the mean unless you pass skipna=False or specify multiple axes. And, ```python In [2]: import bottleneck In [3]: bottleneck.version Out[3]: '1.2.0' In [6]: bottleneck.nanmean(ds.var167.data) Out[6]: 261.6441345214844 ``` Forgive me if I'm wrong, I'm still a bit new. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
218459353 |