issues
29 rows where state = "closed" and user = 22245117 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, updated_at, closed_at, draft, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1918317723 | PR_kwDOAMm_X85bfKv_ | 8253 | fix zarr datetime64 chunks | malmans2 22245117 | closed | 0 | 14 | 2023-09-28T21:48:32Z | 2024-01-29T19:12:31Z | 2024-01-29T19:12:31Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/8253 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8253/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1987252044 | PR_kwDOAMm_X85fHv_I | 8439 | Restore dask arrays rather than editing encoding | malmans2 22245117 | closed | 0 | 0 | 2023-11-10T09:32:23Z | 2023-11-10T09:58:39Z | 2023-11-10T09:58:39Z | CONTRIBUTOR | 1 | pydata/xarray/pulls/8439 | Just to show why restoring dask arrays rather than editing encoding does not work in #8253 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8439/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1355807694 | I_kwDOAMm_X85Qz_vO | 6970 | empty attributes silently change | malmans2 22245117 | closed | 0 | 3 | 2022-08-30T13:51:14Z | 2023-09-09T04:53:20Z | 2023-09-09T04:53:20Z | CONTRIBUTOR | What happened?When What did you expect to happen?In the example below, the tokens should be identical. Minimal Complete Verifiable Example```Python import xarray as xr import dask ds = xr.Dataset({"foo": [0]}) # the assertion below would be OK if I specify attrs={} token0 = dask.base.tokenize(ds) print(ds) # this could be anything that uses attrs under the hood token1 = dask.base.tokenize(ds) assert token0 == token1 AssertionError:``` MVCE confirmation
Relevant log outputNo response Anything else we need to know?I thought we could store But a few tests failed, so it's probably the wrong way to fix this: ``` _________________ TestDask.test_attrs_mfdataset __________________ self = <xarray.tests.test_backends.TestDask object at 0x151cf2ef0>
/Users/mattia/MyGit/xarray/xarray/tests/test_backends.py:3576: Failed __________________ TestDask.test_open_mfdataset_attrs_file ___________________ self = <xarray.tests.test_backends.TestDask object at 0x151cf1de0>
/Users/mattia/MyGit/xarray/xarray/tests/test_backends.py:3594: AssertionError ________________ TestDask.test_open_mfdataset_attrs_file_path ________________ self = <xarray.tests.test_backends.TestDask object at 0x151cf1c30>
/Users/mattia/MyGit/xarray/xarray/tests/test_backends.py:3613: AssertionError ============================================================================================================================== warnings summary ============================================================================================================================== ../../miniconda3/envs/xarray/lib/python3.10/site-packages/seaborn/rcmod.py:82 /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/seaborn/rcmod.py:82: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead. if LooseVersion(mpl.version) >= "3.0": ../../miniconda3/envs/xarray/lib/python3.10/site-packages/setuptools/_distutils/version.py:346 xarray/tests/test_backends.py::TestNetCDF4Data::test_zero_dimensional_variable /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/setuptools/_distutils/version.py:346: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead. other = LooseVersion(other) xarray/tests/test_array_api.py:10 /Users/mattia/MyGit/xarray/xarray/tests/test_array_api.py:10: UserWarning: The numpy.array_api submodule is still experimental. See NEP 47. import numpy.array_api as xp # isort:skip xarray/tests/test_accessor_dt.py: 7 warnings xarray/tests/test_cftime_offsets.py: 5 warnings xarray/tests/test_cftimeindex.py: 64 warnings xarray/tests/test_cftimeindex_resample.py: 488 warnings xarray/tests/test_missing.py: 2 warnings /Users/mattia/MyGit/xarray/xarray/coding/times.py:365: FutureWarning: Index.ravel returning ndarray is deprecated; in a future version this will return a view on self. sample = dates.ravel()[0] xarray/tests/test_backends.py::TestNetCDF4Data::test_zero_dimensional_variable /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/cfgrib/xarray_plugin.py:11: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead. if LooseVersion(xr.version) <= "0.17.0": xarray/tests/test_backends.py::TestDask::test_inline_array /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/_pytest/python.py:192: RuntimeWarning: deallocating CachingFileManager(<class 'netCDF4._netCDF4.Dataset'>, '/var/folders/_x/gdn6kyqn5d5g9j_ygdpcv5vm0000gp/T/tmp7ww27uxi/temp-2317.nc', mode='r', kwargs={'clobber': True, 'diskless': False, 'persist': False, 'format': 'NETCDF4'}), but file is not already closed. This may indicate a bug. result = testfunction(**testargs) xarray/tests/test_backends.py::test_open_fsspec /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/fsspec/implementations/cached.py:589: ResourceWarning: unclosed file <_io.BufferedReader name='/var/folders/_x/gdn6kyqn5d5g9j_ygdpcv5vm0000gp/T/tmp8f034evp/0d56871fd8c14f69c81fd11bcd488de08bd1efce70691c6143d2a5f88be9ca84'> out[p] = open(fn, "rb").read() Enable tracemalloc to get traceback where the object was allocated. See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info. xarray/tests/test_backends.py::test_open_fsspec /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/fsspec/implementations/cached.py:589: ResourceWarning: unclosed file <_io.BufferedReader name='/var/folders/_x/gdn6kyqn5d5g9j_ygdpcv5vm0000gp/T/tmp8f034evp/836ec38b21b701a0aae052168a2a2eab45504e6c6ba441f202e77f4f79b1a7c4'> out[p] = open(fn, "rb").read() Enable tracemalloc to get traceback where the object was allocated. See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info. xarray/tests/test_backends.py::test_open_fsspec /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/fsspec/implementations/cached.py:589: ResourceWarning: unclosed file <_io.BufferedReader name='/var/folders/_x/gdn6kyqn5d5g9j_ygdpcv5vm0000gp/T/tmpmf5ddc2u/5b50e5f9d1df25a3c114c62d7a9dcfcd80615885572d4e2cb48894b48a393262'> out[p] = open(fn, "rb").read() Enable tracemalloc to get traceback where the object was allocated. See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info. xarray/tests/test_backends.py::test_open_fsspec /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/fsspec/implementations/cached.py:589: ResourceWarning: unclosed file <_io.BufferedReader name='/var/folders/_x/gdn6kyqn5d5g9j_ygdpcv5vm0000gp/T/tmpmf5ddc2u/0d56871fd8c14f69c81fd11bcd488de08bd1efce70691c6143d2a5f88be9ca84'> out[p] = open(fn, "rb").read() Enable tracemalloc to get traceback where the object was allocated. See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info. xarray/tests/test_backends.py::test_open_fsspec /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/fsspec/implementations/cached.py:589: ResourceWarning: unclosed file <_io.BufferedReader name='/var/folders/_x/gdn6kyqn5d5g9j_ygdpcv5vm0000gp/T/tmpmf5ddc2u/77aeffecc910b7c6882406131a4d36469d935a55c401298dbce90adb89d7d275'> out[p] = open(fn, "rb").read() Enable tracemalloc to get traceback where the object was allocated. See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info. xarray/tests/test_backends.py::test_open_fsspec /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/fsspec/implementations/cached.py:589: ResourceWarning: unclosed file <_io.BufferedReader name='/var/folders/_x/gdn6kyqn5d5g9j_ygdpcv5vm0000gp/T/tmpmf5ddc2u/836ec38b21b701a0aae052168a2a2eab45504e6c6ba441f202e77f4f79b1a7c4'> out[p] = open(fn, "rb").read() Enable tracemalloc to get traceback where the object was allocated. See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info. xarray/tests/test_calendar_ops.py: 14 warnings
xarray/tests/test_cftime_offsets.py: 12 warnings
xarray/tests/test_computation.py: 4 warnings
/Users/mattia/MyGit/xarray/xarray/coding/cftime_offsets.py:1130: FutureWarning: Argument xarray/tests/test_dataarray.py::TestDataArray::test_to_and_from_cdms2_sgrid xarray/tests/test_dataarray.py::TestDataArray::test_to_and_from_cdms2_sgrid xarray/tests/test_dataarray.py::TestDataArray::test_to_and_from_cdms2_sgrid xarray/tests/test_dataarray.py::TestDataArray::test_to_and_from_cdms2_sgrid /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/numpy/ma/core.py:7891: DeprecationWarning: elementwise comparison failed; this will raise an error in the future. if not np.all(xinf == filled(np.isinf(y), False)): xarray/tests/test_dataset.py: 12 warnings
xarray/tests/test_units.py: 20 warnings
/Users/mattia/MyGit/xarray/xarray/core/common.py:1079: PendingDeprecationWarning: dropping variables using xarray/tests/test_distributed.py::test_open_mfdataset_can_open_files_with_cftime_index xarray/tests/test_distributed.py::test_open_mfdataset_can_open_files_with_cftime_index /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/tornado/ioloop.py:263: DeprecationWarning: There is no current event loop loop = asyncio.get_event_loop() xarray/tests/test_distributed.py::test_open_mfdataset_can_open_files_with_cftime_index /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/tornado/platform/asyncio.py:326: DeprecationWarning: There is no current event loop self.old_asyncio = asyncio.get_event_loop() xarray/tests/test_distributed.py::test_open_mfdataset_can_open_files_with_cftime_index /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/tornado/platform/asyncio.py:193: DeprecationWarning: There is no current event loop old_loop = asyncio.get_event_loop() xarray/tests/test_duck_array_ops.py::test_datetime_mean[True] xarray/tests/test_duck_array_ops.py::test_datetime_mean[True] xarray/tests/test_duck_array_ops.py::test_datetime_mean[True] xarray/tests/test_duck_array_ops.py::test_datetime_mean[True] xarray/tests/test_duck_array_ops.py::test_datetime_mean[True] xarray/tests/test_duck_array_ops.py::test_datetime_mean[True] xarray/tests/test_duck_array_ops.py::test_datetime_mean[True] xarray/tests/test_duck_array_ops.py::test_datetime_mean[True] /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/dask/array/reductions.py:611: RuntimeWarning: All-NaN slice encountered return np.nanmin(x_chunk, axis=axis, keepdims=keepdims) xarray/tests/test_duck_array_ops.py::test_datetime_mean[True] xarray/tests/test_duck_array_ops.py::test_datetime_mean[True] /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/dask/array/reductions.py:611: RuntimeWarning: All-NaN axis encountered return np.nanmin(x_chunk, axis=axis, keepdims=keepdims) xarray/tests/test_groupby.py::test_groupby_drops_nans /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/flox/aggregate_flox.py:105: RuntimeWarning: invalid value encountered in true_divide out /= nanlen(group_idx, array, size=size, axis=axis, fill_value=0) xarray/tests/test_plot.py::TestFacetGrid::test_facetgrid_polar xarray/tests/test_plot.py::TestFacetGrid::test_facetgrid_polar xarray/tests/test_plot.py::TestFacetGrid::test_facetgrid_polar /Users/mattia/MyGit/xarray/xarray/plot/plot.py:1478: MatplotlibDeprecationWarning: Auto-removal of grids by pcolor() and pcolormesh() is deprecated since 3.5 and will be removed two minor releases later; please call grid(False) first. primitive = ax.pcolormesh(x, y, z, **kwargs) xarray/tests/test_print_versions.py::test_show_versions /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/_distutils_hack/init.py:33: UserWarning: Setuptools is replacing distutils. warnings.warn("Setuptools is replacing distutils.") xarray/tests/test_variable.py::TestVariableWithDask::test_eq_all_dtypes xarray/tests/test_variable.py::TestVariableWithDask::test_eq_all_dtypes xarray/tests/test_variable.py::TestVariableWithDask::test_eq_all_dtypes xarray/tests/test_variable.py::TestVariableWithDask::test_eq_all_dtypes /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/dask/core.py:119: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison return func(*(_execute_task(a, cache) for a in args)) xarray/tests/test_weighted.py::test_weighted_quantile_equal_weights[1-True-0.5-da2] xarray/tests/test_weighted.py::test_weighted_quantile_equal_weights[1-True-q1-da2] xarray/tests/test_weighted.py::test_weighted_quantile_equal_weights[3.14-True-0.5-da2] xarray/tests/test_weighted.py::test_weighted_quantile_equal_weights[3.14-True-q1-da2] /Users/mattia/miniconda3/envs/xarray/lib/python3.10/site-packages/numpy/lib/nanfunctions.py:1560: RuntimeWarning: All-NaN slice encountered r, k = function_base._ureduce(a, -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html ========================================================================================================================== short test summary info =========================================================================================================================== FAILED xarray/tests/test_backends.py::TestDask::test_attrs_mfdataset - Failed: DID NOT RAISE <class 'AttributeError'> FAILED xarray/tests/test_backends.py::TestDask::test_open_mfdataset_attrs_file - AssertionError: assert 'test1' not in {'test1': 'foo', 'test2': 'bar'} FAILED xarray/tests/test_backends.py::TestDask::test_open_mfdataset_attrs_file_path - AssertionError: assert 'test1' not in {'test1': 'foo', 'test2': 'bar'} ===================================================================================== 3 failed, 14484 passed, 1189 skipped, 211 xfailed, 65 xpassed, 671 warnings in 1223.86s (0:20:23) ====================================================================================== /Users/mattia/miniconda3/envs/xarray/lib/python3.10/multiprocessing/resource_tracker.py:224: UserWarning: resource_tracker: There appear to be 31 leaked semaphore objects to clean up at shutdown warnings.warn('resource_tracker: There appear to be %d ' ``` Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.6 | packaged by conda-forge | (main, Aug 22 2022, 20:43:44) [Clang 13.0.1 ]
python-bits: 64
OS: Darwin
OS-release: 21.5.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: None
LOCALE: (None, 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2022.6.0
pandas: 1.4.3
numpy: 1.23.2
scipy: None
netCDF4: 1.6.0
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: 2.12.0
cftime: 1.6.1
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: 0.9.10.1
iris: None
bottleneck: None
dask: 2022.8.1
distributed: 2022.8.1
matplotlib: None
cartopy: None
seaborn: None
numbagg: None
fsspec: 2022.7.1
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 65.3.0
pip: 22.2.2
conda: None
pytest: 7.1.2
IPython: 8.4.0
sphinx: 5.1.1
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6970/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1862636081 | PR_kwDOAMm_X85Yj6RX | 8101 | Fix tokenize with empty attrs | malmans2 22245117 | closed | 0 | 1 | 2023-08-23T06:13:05Z | 2023-09-09T04:53:19Z | 2023-09-09T04:53:19Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/8101 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8101/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1746328632 | PR_kwDOAMm_X85Sb9Mu | 7900 | fix polyfit changing the original object | malmans2 22245117 | closed | 0 | 1 | 2023-06-07T17:00:21Z | 2023-06-09T15:38:00Z | 2023-06-09T15:37:59Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/7900 |
~New functions/methods are listed in |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7900/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
327101646 | MDU6SXNzdWUzMjcxMDE2NDY= | 2192 | Subplots overlap each other using plot() and cartopy | malmans2 22245117 | closed | 0 | 1 | 2018-05-28T19:20:52Z | 2023-04-28T09:06:22Z | 2023-04-28T09:06:22Z | CONTRIBUTOR | When subplots are narrow (e.g., small lon range and large lat range), they overlap each other.
I'm not sure, but I think that
Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2192/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1605486189 | PR_kwDOAMm_X85LDxq5 | 7575 | fix nczarr when libnetcdf>4.8.1 | malmans2 22245117 | closed | 0 | 1 | 2023-03-01T18:47:09Z | 2023-03-02T16:49:23Z | 2023-03-02T16:49:23Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/7575 |
~User visible changes (including notable bug fixes) are documented in The latest version of netcdf-c does not allow writing a NCZarr file without the xarray's |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7575/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1248389852 | PR_kwDOAMm_X844dcln | 6636 | Use `zarr` to validate attrs when writing to zarr | malmans2 22245117 | closed | 0 | 2 | 2022-05-25T16:46:03Z | 2022-06-03T18:48:54Z | 2022-06-03T18:48:48Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/6636 |
I think we can just use zarr to validate attributes, so we can support all types allowed by zarr. Note that I removed the checks on the keys, as I believe we can rely on zarr for that as well. However, there is an issue with mixed types (e.g., cc: @wankoelias @rabernat |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6636/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1244833334 | I_kwDOAMm_X85KMqY2 | 6628 | `{full,zeros,ones}_like` should return objects with the same type as the input object | malmans2 22245117 | closed | 0 | 1 | 2022-05-23T09:09:55Z | 2022-05-24T04:41:22Z | 2022-05-24T04:41:22Z | CONTRIBUTOR | What happened?I'm getting issues using mypy with the changes to the typing of cc: @headtr1ck What did you expect to happen?I think the object returned should be of the same type as the input object rather than Minimal Complete Verifiable Example```Python import xarray as xr def test_zeros_like(da: xr.DataArray) -> xr.DataArray: return xr.zeros_like(da) ``` MVCE confirmation
Relevant log output
Anything else we need to know?
Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.4 | packaged by conda-forge | (main, Mar 24 2022, 17:43:32) [Clang 12.0.1 ]
python-bits: 64
OS: Darwin
OS-release: 21.5.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: None
LOCALE: (None, 'UTF-8')
libhdf5: None
libnetcdf: None
xarray: 2022.3.1.dev111+g4da7fdbd
pandas: 1.4.2
numpy: 1.22.3
scipy: 1.8.1
netCDF4: None
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: 2.11.3
cftime: None
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.2.10
cfgrib: None
iris: None
bottleneck: None
dask: 2022.05.0
distributed: 2022.5.0
matplotlib: None
cartopy: None
seaborn: None
numbagg: None
fsspec: 2022.5.0
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 62.3.2
pip: 22.1.1
conda: None
pytest: 7.1.2
IPython: None
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6628/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1234204439 | I_kwDOAMm_X85JkHcX | 6600 | `polyval` returns objects with different dimension order | malmans2 22245117 | closed | 0 | 2 | 2022-05-12T16:07:50Z | 2022-05-12T19:01:58Z | 2022-05-12T19:01:58Z | CONTRIBUTOR | What is your issue?I noticed that the dimension order of the object returned by the latest values = np.array( [ "2021-04-01T05:25:19.000000000", "2021-04-01T05:25:29.000000000", "2021-04-01T05:25:39.000000000", "2021-04-01T05:25:49.000000000", "2021-04-01T05:25:59.000000000", "2021-04-01T05:26:09.000000000", ], dtype="datetime64[ns]", ) azimuth_time = xr.DataArray( values, name="azimuth_time", coords={"azimuth_time": values - values[0]} ) polyfit_coefficients = xr.DataArray( [ [2.33333335e-43, 1.62499999e-43, 2.79166678e-43], [-1.15316667e-30, 1.49518518e-31, 9.08833333e-31], [-2.50272583e-18, -1.23851062e-18, -2.99098229e-18], [5.83965193e-06, -1.53321770e-07, -4.84640242e-06], [4.44739216e06, 1.45053974e06, 5.29960857e06], ], dims=("degree", "axis"), coords={"axis": [0, 1, 2], "degree": [4, 3, 2, 1, 0]}, ) ds_out = xr.polyval(azimuth_time.coords["azimuth_time"], polyfit_coefficients)
print(ds_out.dims)
xarray v2022.3.1.dev103+gfc282d59 ('axis', 'azimuth_time') ``` Is this the expected behaviour? If yes, is it worth mentioning this change in what's new/breaking changes? cc: @headtr1ck |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6600/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1233717699 | I_kwDOAMm_X85JiQnD | 6597 | `polyval` with timedelta64 coordinates produces wrong results | malmans2 22245117 | closed | 0 | 3 | 2022-05-12T09:33:24Z | 2022-05-12T15:43:29Z | 2022-05-12T15:43:29Z | CONTRIBUTOR | What happened?I'm not sure if this is a bug or an expected breaking change, but I'm not able to reproduce the results generated by What did you expect to happen?Both the stable and latest Minimal Complete Verifiable Example```Python import xarray as xr import numpy as np values = np.array( [ "2021-04-01T05:25:19.000000000", "2021-04-01T05:25:29.000000000", "2021-04-01T05:25:39.000000000", "2021-04-01T05:25:49.000000000", "2021-04-01T05:25:59.000000000", "2021-04-01T05:26:09.000000000", ], dtype="datetime64[ns]", ) azimuth_time = xr.DataArray( values, name="azimuth_time", coords={"azimuth_time": values - values[0]} ) polyfit_coefficients = xr.DataArray( [ [2.33333335e-43, 1.62499999e-43, 2.79166678e-43], [-1.15316667e-30, 1.49518518e-31, 9.08833333e-31], [-2.50272583e-18, -1.23851062e-18, -2.99098229e-18], [5.83965193e-06, -1.53321770e-07, -4.84640242e-06], [4.44739216e06, 1.45053974e06, 5.29960857e06], ], dims=("degree", "axis"), coords={"axis": [0, 1, 2], "degree": [4, 3, 2, 1, 0]}, ) print(xr.polyval(azimuth_time, polyfit_coefficients)) ``` MVCE confirmation
Relevant log output```Python v2022.3.0 (Correct results)<xarray.DataArray (azimuth_time: 6, axis: 3)> array([[4447392.16 , 1450539.74 , 5299608.57 ], [4505537.25588366, 1448882.82238152, 5250846.359196 ], [4563174.92026797, 1446979.12250014, 5201491.44401733], [4620298.31815291, 1444829.59596699, 5151549.377964 ], [4676900.67053846, 1442435.23739315, 5101025.78153601], [4732975.25442459, 1439797.08038974, 5049926.34223336]]) Coordinates: * azimuth_time (azimuth_time) datetime64[ns] 2021-04-01T05:25:19 ... 2021-... * axis (axis) int64 0 1 2 v2022.3.1.dev102+g6bb2b855 (Wrong results)<xarray.DataArray (axis: 3, azimuth_time: 6)> array([[1.59620685e+30, 1.59620689e+30, 1.59620693e+30, 1.59620697e+30, 1.59620700e+30, 1.59620704e+30], [1.11164807e+30, 1.11164810e+30, 1.11164812e+30, 1.11164815e+30, 1.11164818e+30, 1.11164821e+30], [1.90975722e+30, 1.90975727e+30, 1.90975732e+30, 1.90975736e+30, 1.90975741e+30, 1.90975746e+30]]) Coordinates: * axis (axis) int64 0 1 2 * azimuth_time (azimuth_time) timedelta64[ns] 00:00:00 00:00:10 ... 00:00:50 ``` Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.4 | packaged by conda-forge | (main, Mar 24 2022, 17:43:32) [Clang 12.0.1 ]
python-bits: 64
OS: Darwin
OS-release: 21.4.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: None
LOCALE: (None, 'UTF-8')
libhdf5: None
libnetcdf: None
xarray: 2022.3.0 or 2022.3.1.dev102+g6bb2b855
pandas: 1.4.2
numpy: 1.22.3
scipy: 1.8.0
netCDF4: None
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: 2.11.3
cftime: None
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.2.10
cfgrib: None
iris: None
bottleneck: None
dask: 2022.05.0
distributed: 2022.5.0
matplotlib: None
cartopy: None
seaborn: None
numbagg: None
fsspec: 2022.3.0
cupy: None
pint: None
sparse: None
setuptools: 62.2.0
pip: 22.1
conda: None
pytest: 7.1.2
IPython: None
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6597/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1183534905 | PR_kwDOAMm_X841KS8J | 6420 | Add support in the "zarr" backend for reading NCZarr data | malmans2 22245117 | closed | 0 | 6 | 2022-03-28T14:32:27Z | 2022-04-14T15:36:14Z | 2022-04-14T15:36:05Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/6420 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6420/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 2, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
1172229856 | I_kwDOAMm_X85F3s7g | 6374 | Should the zarr backend support NCZarr conventions? | malmans2 22245117 | closed | 0 | 18 | 2022-03-17T11:00:17Z | 2022-04-14T15:36:05Z | 2022-04-14T15:36:05Z | CONTRIBUTOR | What is your issue?As part of the CZI EOSS4 grant, at B-Open we are keen on improving xarray/zarr cross-community conventions. It looks like xarray's Currently, it is possible to open a ds = xr.Dataset( { "a": (("y", "x"), np.random.rand(6).reshape(2, 3)), "b": (("y", "x"), np.random.rand(6).reshape(2, 3)), }, coords={"y": [0, 1], "x": [10, 20, 30]}, ) ds.to_netcdf("file://test.nczarr#mode=nczarr") ds_from_nczarr = xr.open_dataset("file://test.nczarr#mode=nczarr", engine="netcdf4") xr.testing.assert_identical(ds, ds_from_nczarr) xr.open_dataset("test.nczarr", engine="zarr") KeyError: 'Zarr object is missing the attribute
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6374/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
925444927 | MDU6SXNzdWU5MjU0NDQ5Mjc= | 5495 | Add `typing-extensions` to the list of dependencies? | malmans2 22245117 | closed | 0 | 8 | 2021-06-19T18:26:36Z | 2021-08-07T15:28:39Z | 2021-07-22T23:02:03Z | CONTRIBUTOR |
However,
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5495/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
926503178 | MDExOlB1bGxSZXF1ZXN0Njc0Nzk4NTAz | 5507 | specify typing-extensions version | malmans2 22245117 | closed | 0 | 1 | 2021-06-21T18:58:50Z | 2021-07-02T12:45:35Z | 2021-07-02T12:45:35Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5507 |
See: https://github.com/pydata/xarray/pull/5503#discussion_r655550526 cc: @dcherian |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5507/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
925981767 | MDExOlB1bGxSZXF1ZXN0Njc0MzUxMjQw | 5503 | Add typing-extensions to dependencies | malmans2 22245117 | closed | 0 | 3 | 2021-06-21T08:47:44Z | 2021-06-21T16:51:18Z | 2021-06-21T15:13:21Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5503 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5503/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
912932344 | MDExOlB1bGxSZXF1ZXN0NjYzMDM3MzU0 | 5445 | Add `xr.unify_chunks()` top level method | malmans2 22245117 | closed | 0 | 7 | 2021-06-06T19:51:47Z | 2021-06-21T08:53:40Z | 2021-06-16T14:56:59Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5445 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5445/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
904865813 | MDExOlB1bGxSZXF1ZXN0NjU1OTg2NTg4 | 5393 | Don't drop unreduced variables | malmans2 22245117 | closed | 0 | 4 | 2021-05-28T07:40:30Z | 2021-06-21T08:53:31Z | 2021-06-12T17:45:00Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5393 |
Reduce methods such as cc: @rcaneill |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5393/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
904934839 | MDExOlB1bGxSZXF1ZXN0NjU2MDQ5NDcx | 5394 | Allow selecting variables using a list with mixed data types | malmans2 22245117 | closed | 0 | 2 | 2021-05-28T08:24:23Z | 2021-06-21T08:53:29Z | 2021-06-12T17:44:05Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5394 |
Lists passed to |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5394/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
912477313 | MDExOlB1bGxSZXF1ZXN0NjYyNjMyNzI2 | 5440 | Consistent chunking after broadcasting | malmans2 22245117 | closed | 0 | 1 | 2021-06-05T22:27:39Z | 2021-06-21T08:53:12Z | 2021-06-21T08:53:09Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5440 |
I think it does the job, although I'm not sure whether this is the best approach. A couple of questions:
1. I should probably add a test. Where is the best place? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5440/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
903983811 | MDU6SXNzdWU5MDM5ODM4MTE= | 5387 | KeyError when trying to select a list of DataArrays with different name type | malmans2 22245117 | closed | 0 | 6 | 2021-05-27T16:49:27Z | 2021-06-12T17:44:05Z | 2021-06-12T17:44:05Z | CONTRIBUTOR | What happened: Looks like I can't select a list of DataArrays with different name type. What you expected to happen: If this is not a bug, consider raising a more informative error. Minimal Complete Verifiable Example: ```python import xarray as xr from xarray import Dataset, DataArray keys = ["foo", 1] ds = Dataset() for key in keys: ds[key] = DataArray() ds[keys]
Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.9.4 | packaged by conda-forge | (default, May 10 2021, 22:13:33) [GCC 9.3.0] python-bits: 64 OS: Linux OS-release: 5.8.0-53-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: ('en_US', 'UTF-8') libhdf5: 1.10.6 libnetcdf: 4.8.0 xarray: 0.18.2 pandas: 1.2.4 numpy: 1.20.3 scipy: None netCDF4: 1.5.6 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.5.0 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2021.05.0 distributed: 2021.05.0 matplotlib: 3.4.2 cartopy: None seaborn: None numbagg: None pint: 0.17 setuptools: 49.6.0.post20210108 pip: 21.1.2 conda: None pytest: 6.2.4 IPython: 7.23.1 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5387/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
897210919 | MDU6SXNzdWU4OTcyMTA5MTk= | 5354 | Should weighted operations raise an error when dimensions don't exist? | malmans2 22245117 | closed | 0 | 2 | 2021-05-20T17:57:05Z | 2021-05-23T23:45:47Z | 2021-05-23T23:45:47Z | CONTRIBUTOR | What happened: Weighted operations don't raise an error when the dimensions passed don't exist. What you expected to happen: This is not really a bug, but I find it a bit confusing because it's not consistent with the same "unweighted" operation. Minimal Complete Verifiable Example:
Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.9.4 | packaged by conda-forge | (default, May 10 2021, 22:13:33) [GCC 9.3.0] python-bits: 64 OS: Linux OS-release: 3.10.0-1062.18.1.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: ('en_GB', 'UTF-8') libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.18.1.dev30+g2578fc3 pandas: 1.2.4 numpy: 1.20.2 scipy: 1.6.3 netCDF4: 1.5.6 pydap: installed h5netcdf: 0.11.0 h5py: 3.2.1 Nio: None zarr: 2.8.1 cftime: 1.4.1 nc_time_axis: 1.2.0 PseudoNetCDF: None rasterio: 1.2.3 cfgrib: 0.9.9.0 iris: None bottleneck: 1.3.2 dask: 2021.05.0 distributed: 2021.05.0 matplotlib: 3.4.2 cartopy: 0.19.0.post1 seaborn: 0.11.1 numbagg: installed pint: None setuptools: 49.6.0.post20210108 pip: 21.1.1 conda: None pytest: None IPython: 7.23.1 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5354/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
898841079 | MDExOlB1bGxSZXF1ZXN0NjUwNjU2MDg1 | 5362 | Check dimensions before applying weighted operations | malmans2 22245117 | closed | 0 | 4 | 2021-05-22T16:51:54Z | 2021-05-23T23:45:47Z | 2021-05-23T23:45:47Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5362 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5362/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
841097432 | MDExOlB1bGxSZXF1ZXN0NjAwODgxNzE4 | 5076 | Improve map_blocks docs | malmans2 22245117 | closed | 0 | 1 | 2021-03-25T16:23:35Z | 2021-03-29T17:46:02Z | 2021-03-29T17:45:59Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5076 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5076/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
839914235 | MDU6SXNzdWU4Mzk5MTQyMzU= | 5071 | Applying a function on a subset of variables using `map_blocks` is much slower | malmans2 22245117 | closed | 0 | 1 | 2021-03-24T16:39:08Z | 2021-03-29T17:45:58Z | 2021-03-29T17:45:58Z | CONTRIBUTOR | What happened:
Looks like when I use What you expected to happen: In the example below, I wouldn't expect such a difference in computation time. Minimal Complete Verifiable Example:
```python %%timeit Subsample the dataset before calling map_blocksfunc(ds).map_blocks(func).compute() ```
Anything else we need to know?: Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.9.2 | packaged by conda-forge | (default, Feb 21 2021, 05:02:46) [GCC 9.3.0] python-bits: 64 OS: Linux OS-release: 3.10.0-1062.18.1.el7.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.17.0 pandas: 1.2.3 numpy: 1.20.1 scipy: 1.6.1 netCDF4: 1.5.6 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.4.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2021.03.0 distributed: 2021.03.0 matplotlib: 3.3.4 cartopy: None seaborn: None numbagg: None pint: None setuptools: 49.6.0.post20210108 pip: 21.0.1 conda: None pytest: 6.2.2 IPython: 7.21.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5071/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
674379292 | MDU6SXNzdWU2NzQzNzkyOTI= | 4319 | KeyError when faceting along time dimensions | malmans2 22245117 | closed | 0 | 4 | 2020-08-06T14:57:15Z | 2020-08-06T15:43:43Z | 2020-08-06T15:43:43Z | CONTRIBUTOR | What happened:
I think the latest Minimal Complete Verifiable Example:
Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.7.8 | packaged by conda-forge | (default, Jul 31 2020, 02:25:08) [GCC 7.5.0] python-bits: 64 OS: Linux OS-release: 5.4.0-42-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.16.0 pandas: 1.1.0 numpy: 1.19.1 scipy: 1.5.2 netCDF4: 1.5.4 pydap: None h5netcdf: None h5py: None Nio: None zarr: 2.4.0 cftime: 1.2.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: 1.3.2 dask: 2.22.0 distributed: 2.22.0 matplotlib: 3.3.0 cartopy: 0.18.0 seaborn: None numbagg: None pint: None setuptools: 49.2.1.post20200802 pip: 20.2.1 conda: None pytest: 6.0.1 IPython: 7.17.0 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4319/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
557931967 | MDU6SXNzdWU1NTc5MzE5Njc= | 3734 | Wrong facet plots when all 2D arrays have one value only | malmans2 22245117 | closed | 0 | 1 | 2020-01-31T06:00:15Z | 2020-04-03T19:48:54Z | 2020-04-03T19:48:54Z | CONTRIBUTOR | MCVE Code Sample
```python Create DataArrayda = xr.DataArray(np.zeros((10, 10, 4))) ``` ```python Default plotWrong: all of them should be 0.da.plot(col='dim_2') ```
Expected Output```python Providing colorbar limitsCorrect.da.plot(col='dim_2', vmin=-.1, vmax=.1) ```
Problem DescriptionIf I simply use Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3734/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
397063221 | MDU6SXNzdWUzOTcwNjMyMjE= | 2662 | open_mfdataset in v.0.11.1 is very slow | malmans2 22245117 | closed | 0 | 6 | 2019-01-08T19:59:47Z | 2019-01-17T13:05:43Z | 2019-01-17T13:05:43Z | CONTRIBUTOR | I have several repositories corresponding to different time periods of time.
Each repository contains several netCDF files with different variables.
Here is a simplified example:
Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2662/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
304624171 | MDU6SXNzdWUzMDQ2MjQxNzE= | 1985 | Load a small subset of data from a big dataset takes forever | malmans2 22245117 | closed | 0 | 8 | 2018-03-13T04:27:58Z | 2019-01-13T01:46:08Z | 2019-01-13T01:46:08Z | CONTRIBUTOR | Code Sample```python def cut_dataset(ds2cut, varList = ['Temp' 'S' 'Eta' 'U' 'V' 'W'], lonRange = [-180, 180], latRange = [-90, 90], depthRange = [0, float("inf")], timeRange = ['2007-09-01T00', '2008-08-31T18'], timeFreq = '1D', sampMethod = 'mean', interpC = True, saveNetCDF = False): """ Cut the dataset """
3D testds_cut, grid_cut = cut_dataset(ds, varList = ['Eta'], latRange = [65, 65.5], depthRange = [0, 2], timeRange = ['2007-11-15T00', '2007-11-16T00'], timeFreq = '1D', sampMethod = 'mean', interpC = False, saveNetCDF = '3Dvariable.nc') 4D testds_cut, grid_cut = cut_dataset(ds, varList = ['Temp'], lonRange = [-30, -29.5], latRange = [65, 65.5], depthRange = [0, 2], timeRange = ['2007-11-15T00', '2007-11-16T00'], timeFreq = '1D', sampMethod = 'mean', interpC = False, saveNetCDF = '4Dvariable.nc') ``` Problem descriptionI'm working with a big dataset. However, most of the time I only need a small subset of data. My idea was to open and concatenate everything with open_mfdataset, and then extract subsets of data using the indexing routines. This approach works very good when I extract 3D variables (just lon, lat, and time), but it fails when I try to extract 4D variables (lon, lat, time, and depth). It doesn't actually fail, but to_netcdf takes forever. When I open a smaller dataset since the very beginning (let's say just November), then I'm also able to extract 4D variables. When I load the sub-dataset after using the indexing routines, does xarray need to read the whole original 4D variable? If yes, then I should probably change my approach and I should open subset of data since the very beginning. If no, am I doing something wrong? Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1985/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);