issues
24 rows where repo = 13221727, state = "open" and user = 5635139 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1920361792 | PR_kwDOAMm_X85bl988 | 8258 | Add a `.drop_attrs` method | max-sixty 5635139 | open | 0 | 9 | 2023-09-30T18:42:12Z | 2024-02-09T18:49:22Z | MEMBER | 0 | pydata/xarray/pulls/8258 | Part of #3891 ~Do we think this is a good idea? I'll add docs & tests if so...~ Ready to go, just needs agreement on whether it's good |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8258/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||||
1916677049 | I_kwDOAMm_X85yPiu5 | 8245 | Tools for writing distributed zarrs | max-sixty 5635139 | open | 0 | 0 | 2023-09-28T04:25:45Z | 2024-01-04T00:15:09Z | MEMBER | What is your issue?There seems to be a common pattern for writing zarrs from a distributed set of machines, in parallel. It's somewhat described in the prose of the io docs. Quoting:
I've been using this fairly successfully recently. It's much better than writing hundreds or thousands of data variables, since many small data variables create a huge number of files. Are there some tools we can provide to make this easier? Some ideas:
- [ ]
More minor papercuts:
- [ ] I've hit an issue where writing a region seemed to cause the worker to attempt to load the whole array into memory — can we offer guarantees for when (non-metadata) data will be loaded during Some things that were in the list here, as they've been completed!!
- [x] Requiring |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8245/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 1 } |
xarray 13221727 | issue | ||||||||
2052840951 | I_kwDOAMm_X856W933 | 8566 | Use `ddof=1` for `std` & `var` | max-sixty 5635139 | open | 0 | 2 | 2023-12-21T17:47:21Z | 2023-12-27T16:58:46Z | MEMBER | What is your issue?I've discussed this a bunch with @dcherian (though I'm not sure he necessarily agrees, I'll let him comment) Currently xarray uses OTOH: - It is consistent with numpy - It wouldn't be a painless change — folks who don't read deprecation messages would see values change very slightly Any thoughts? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8566/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
988158051 | MDU6SXNzdWU5ODgxNTgwNTE= | 5764 | Implement __sizeof__ on objects? | max-sixty 5635139 | open | 0 | 6 | 2021-09-03T23:36:53Z | 2023-12-19T18:23:08Z | MEMBER | Is your feature request related to a problem? Please describe.
Currently But Describe the solution you'd like
If we implement I think that would be something like |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5764/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
reopened | xarray 13221727 | issue | |||||||
2000154383 | PR_kwDOAMm_X85fzju6 | 8466 | Move Sphinx directives out of `See also` | max-sixty 5635139 | open | 0 | 2 | 2023-11-18T01:57:17Z | 2023-11-21T18:25:05Z | MEMBER | 0 | pydata/xarray/pulls/8466 | This is potentially causing the |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8466/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||||
1995308522 | I_kwDOAMm_X8527f3q | 8454 | Formalize `mode` / safety guarantees for Zarr | max-sixty 5635139 | open | 0 | 1 | 2023-11-15T18:28:38Z | 2023-11-15T20:38:04Z | MEMBER | What is your issue?It sounds like we're coalescing on when it's safe to write concurrently:
- What are the existing operations that aren't consistent with this?
- Is concurrently writing additional variables safe? Or it requires updating the centralized consolidated metadata? Currently that requires |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8454/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1953001043 | I_kwDOAMm_X850aG5T | 8343 | Add `metadata_only` param to `.to_zarr`? | max-sixty 5635139 | open | 0 | 17 | 2023-10-19T20:25:11Z | 2023-11-15T05:22:12Z | MEMBER | Is your feature request related to a problem?A leaf from https://github.com/pydata/xarray/issues/8245, which has a bullet:
I've also noticed that for large arrays, running Describe the solution you'd likeWould introducing a Describe alternatives you've consideredNo response Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8343/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1986643906 | I_kwDOAMm_X852acfC | 8437 | Restrict pint test runs | max-sixty 5635139 | open | 0 | 10 | 2023-11-10T00:50:52Z | 2023-11-13T21:57:45Z | MEMBER | What is your issue?Pint tests are failing on main — https://github.com/pydata/xarray/actions/runs/6817674274/job/18541677930
If we can't fix soon, should we disable? CC @keewis |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8437/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
874039546 | MDU6SXNzdWU4NzQwMzk1NDY= | 5246 | test_save_mfdataset_compute_false_roundtrip fails | max-sixty 5635139 | open | 0 | 1 | 2021-05-02T20:41:48Z | 2023-11-02T04:38:05Z | MEMBER | What happened:
Here's the traceback: ```python self = <xarray.tests.test_backends.TestDask object at 0x000001FF45A9B640>
Anything else we need to know?: xfailed in https://github.com/pydata/xarray/pull/5245 Environment: [Eliding since it's the test env] |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5246/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1923431725 | I_kwDOAMm_X85ypT0t | 8264 | Improve error messages | max-sixty 5635139 | open | 0 | 4 | 2023-10-03T06:42:57Z | 2023-10-24T18:40:04Z | MEMBER | Is your feature request related to a problem?Coming back to xarray, and using it based on what I remember from a year ago or so, means I make lots of mistakes. I've also been using it outside of a repl, where error messages are more important, given I can't explore a dataset inline. Some of the error messages could be much more helpful. Take one example:
The second sentence is nice. But the first could be give us much more information:
- Which variables conflict? I'm merging four objects, so would be so helpful to know which are causing the issue.
- What is the conflict? Is one a superset and I can Having these good is really useful, lets folks stay in the flow while they're working, and it signals that we're a well-built, refined library. Describe the solution you'd likeI'm not sure the best way to surface the issues — error messages make for less legible contributions than features or bug fixes, and the primary audience for good error messages is often the opposite of those actively developing the library. They're also more difficult to manage as GH issues — there could be scores of marginal issues which would often be out of date. One thing we do in PRQL is have a file that snapshots error messages Any other ideas? Describe alternatives you've consideredNo response Additional contextA couple of specific error-message issues: - https://github.com/pydata/xarray/issues/2078 - https://github.com/pydata/xarray/issues/5290 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8264/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1216647336 | PR_kwDOAMm_X8421oXV | 6521 | Move license from readme to LICENSE | max-sixty 5635139 | open | 0 | 3 | 2022-04-27T00:59:03Z | 2023-10-01T09:31:37Z | MEMBER | 0 | pydata/xarray/pulls/6521 | { "url": "https://api.github.com/repos/pydata/xarray/issues/6521/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||||
1918061661 | I_kwDOAMm_X85yU0xd | 8251 | `.chunk()` doesn't create chunks on 0 dim arrays | max-sixty 5635139 | open | 0 | 0 | 2023-09-28T18:30:50Z | 2023-09-30T21:31:05Z | MEMBER | What happened?
``` """Coerce this array's data into a dask arrays with the given chunks.
``` ...but this doesn't happen for 0 dim arrays; example below. For context, as part of #8245, I had a function that creates a template array. It created an empty What did you expect to happen?It may be that we can't have a 0-dim dask array — but then we should raise in this method, rather than return the wrong thing. Minimal Complete Verifiable Example```Python [ins] In [1]: type(xr.DataArray().chunk().data) Out[1]: numpy.ndarray [ins] In [2]: type(xr.DataArray(1).chunk().data) Out[2]: numpy.ndarray [ins] In [3]: type(xr.DataArray([1]).chunk().data) Out[3]: dask.array.core.Array ``` MVCE confirmation
Relevant log outputNo response Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: 0d6cd2a39f61128e023628c4352f653537585a12
python: 3.9.18 (main, Aug 24 2023, 21:19:58)
[Clang 14.0.3 (clang-1403.0.22.14.1)]
python-bits: 64
OS: Darwin
OS-release: 22.6.0
machine: arm64
processor: arm
byteorder: little
LC_ALL: en_US.UTF-8
LANG: None
LOCALE: ('en_US', 'UTF-8')
libhdf5: None
libnetcdf: None
xarray: 2023.8.1.dev25+g8215911a.d20230914
pandas: 2.1.1
numpy: 1.25.2
scipy: 1.11.1
netCDF4: None
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: 2.16.0
cftime: None
nc_time_axis: None
PseudoNetCDF: None
iris: None
bottleneck: None
dask: 2023.4.0
distributed: 2023.7.1
matplotlib: 3.5.1
cartopy: None
seaborn: None
numbagg: 0.2.3.dev30+gd26e29e
fsspec: 2021.11.1
cupy: None
pint: None
sparse: None
flox: 0.7.2
numpy_groupies: 0.9.19
setuptools: 68.1.2
pip: 23.2.1
conda: None
pytest: 7.4.0
mypy: 1.5.1
IPython: 8.15.0
sphinx: 4.3.2
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8251/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1917820711 | I_kwDOAMm_X85yT58n | 8248 | `write_empty_chunks` not in `DataArray.to_zarr` | max-sixty 5635139 | open | 0 | 0 | 2023-09-28T15:48:22Z | 2023-09-28T15:49:35Z | MEMBER | What is your issue?Our Up a level — not sure of the best way of enforcing consistency here; a couple of ideas.
- We could have tests that operate on both a |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8248/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
587895591 | MDU6SXNzdWU1ODc4OTU1OTE= | 3891 | Keep attrs by default? (keep_attrs) | max-sixty 5635139 | open | 0 | 14 | 2020-03-25T18:17:35Z | 2023-09-22T02:27:50Z | MEMBER | I've held this view in low confidence for a while and wanted to socialize it to see whether there's something to it: Should we keep attrs in operations by default? Advantages:
- I think most of the time people want to keep attrs after operations
- Is that right? Are there cases where it wouldn't be a reasonable default? e.g. good points here for not always keeping coords around
- It's easy to remove them with a (currently unimplemented) Disadvantages:
- Backward incompatible change with an expensive deprecate cycle (would be impractical to have a deprecation warning every time someone ran a function on an object with attrs I think? At least without adding a Here are some existing relevant discussions: - https://github.com/pydata/xarray/issues/3815#issuecomment-603974527 - https://github.com/pydata/xarray/issues/688 - https://github.com/pydata/xarray/pull/2482 - https://github.com/pydata/xarray/issues/3304 I think this is an easy situation to get into: - We make an incorrect-but-insignificant design decision; e.g. some methods don't keep attrs - We want to change that, but avoid breaking backward-compatibility - So we add kwargs and eventually a global config - But now we have a global config that requires global context and lots of kwargs! :( I'm up for leaning towards breaking changes if it makes the library better: I think xarray will grow immensely, and so the narrow immediate pain is worth the broader future positive impact. Clearly if the immediate pain stops xarray growing, then it's not a good tradeoff. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3891/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1905824568 | I_kwDOAMm_X85xmJM4 | 8221 | Frequent doc build timeout / OOM | max-sixty 5635139 | open | 0 | 4 | 2023-09-20T23:02:37Z | 2023-09-21T03:50:07Z | MEMBER | What is your issue?I'm frequently seeing It's after 1552 seconds, so it not being a round number means it might be the memory? It follows Here's an example: https://readthedocs.org/projects/xray/builds/21983708/ Any thoughts for what might be going on? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8221/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1890982762 | I_kwDOAMm_X85wthtq | 8173 | HTML repr with many data vars | max-sixty 5635139 | open | 0 | 1 | 2023-09-11T17:49:32Z | 2023-09-11T20:38:01Z | MEMBER | What is your issue?I've been working with Datasets with 1000+ data vars. The HTML repr is extremely slow. My current solution is to change the config to use the text at the top of the notebook, and then kick myself & restart when I forget. Would folks be OK with us falling back to the text repr automatically for, say, >100 data vars? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8173/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1874148181 | I_kwDOAMm_X85vtTtV | 8123 | `.rolling_exp` arguments could be clearer | max-sixty 5635139 | open | 0 | 6 | 2023-08-30T18:09:04Z | 2023-09-01T00:25:08Z | MEMBER | Is your feature request related to a problem?Currently we call
But we also have different window types, and this makes it a bit incongruent:
...since the Describe the solution you'd likeOne option would be:
We pass a dict if we want a non-standard window type — so the value is attached to its type. We could still have the original form for Describe alternatives you've consideredNo response Additional context(I realize I wrote this originally, all criticism directed at me! This is based on feedback from a colleague, which on reflection I agree with.) Unless anyone disagrees, I'll try and do this soon-ish™ |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8123/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1410336255 | I_kwDOAMm_X85UEAX_ | 7164 | Error on xarray warnings in tests? | max-sixty 5635139 | open | 0 | 5 | 2022-10-16T01:09:27Z | 2022-10-18T09:51:20Z | MEMBER | What is your issue?We've done a superb job of cutting the number of warnings in https://github.com/pydata/xarray/issues/3266. On another project I've been spending time with recently, we raise an error on any warnings in the test suite. It's easy mode — the dependencies are locked (it's not python...), but I wonder whether we can do something some of the way with this: Would it be worth failing on:
- Warnings from within xarray
- There's no chance of an external change causing |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7164/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
485446209 | MDU6SXNzdWU0ODU0NDYyMDk= | 3266 | Warnings in the test suite | max-sixty 5635139 | open | 0 | 8 | 2019-08-26T20:52:34Z | 2022-07-16T14:14:00Z | MEMBER | If anyone is looking for any bite-size contributions, the test suite is throwing off many warnings. Most of these indicate that something will break in the future without code changes; thought mostly the code changes are small. ``` =============================== warnings summary =============================== /usr/share/miniconda/envs/xarray-tests/lib/python3.7/site-packages/heapdict.py:11 /usr/share/miniconda/envs/xarray-tests/lib/python3.7/site-packages/heapdict.py:11: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working class heapdict(collections.MutableMapping): /usr/share/miniconda/envs/xarray-tests/lib/python3.7/site-packages/pydap/model.py:175 /usr/share/miniconda/envs/xarray-tests/lib/python3.7/site-packages/pydap/model.py:175: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import OrderedDict, Mapping /usr/share/miniconda/envs/xarray-tests/lib/python3.7/site-packages/pydap/responses/das.py:14 /usr/share/miniconda/envs/xarray-tests/lib/python3.7/site-packages/pydap/responses/das.py:14: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working from collections import Iterable xarray/tests/test_accessor_dt.py::test_cftime_strftime_access[365_day] /home/vsts/work/1/s/xarray/tests/test_accessor_dt.py:226: RuntimeWarning: Converting a CFTimeIndex with dates from a non-standard calendar, 'noleap', to a pandas.DatetimeIndex, which uses dates from the standard calendar. This may lead to subtle errors in operations that depend on the length of time between dates. xr.coding.cftimeindex.CFTimeIndex(data.time.values).to_datetimeindex(), xarray/tests/test_accessor_dt.py::test_cftime_strftime_access[360_day] /home/vsts/work/1/s/xarray/tests/test_accessor_dt.py:226: RuntimeWarning: Converting a CFTimeIndex with dates from a non-standard calendar, '360_day', to a pandas.DatetimeIndex, which uses dates from the standard calendar. This may lead to subtle errors in operations that depend on the length of time between dates. xr.coding.cftimeindex.CFTimeIndex(data.time.values).to_datetimeindex(), xarray/tests/test_accessor_dt.py::test_cftime_strftime_access[julian] /home/vsts/work/1/s/xarray/tests/test_accessor_dt.py:226: RuntimeWarning: Converting a CFTimeIndex with dates from a non-standard calendar, 'julian', to a pandas.DatetimeIndex, which uses dates from the standard calendar. This may lead to subtle errors in operations that depend on the length of time between dates. xr.coding.cftimeindex.CFTimeIndex(data.time.values).to_datetimeindex(), xarray/tests/test_accessor_dt.py::test_cftime_strftime_access[all_leap] xarray/tests/test_accessor_dt.py::test_cftime_strftime_access[366_day] /home/vsts/work/1/s/xarray/tests/test_accessor_dt.py:226: RuntimeWarning: Converting a CFTimeIndex with dates from a non-standard calendar, 'all_leap', to a pandas.DatetimeIndex, which uses dates from the standard calendar. This may lead to subtle errors in operations that depend on the length of time between dates. xr.coding.cftimeindex.CFTimeIndex(data.time.values).to_datetimeindex(), xarray/tests/test_accessor_str.py::test_empty_str_methods xarray/tests/test_accessor_str.py::test_empty_str_methods xarray/tests/test_accessor_str.py::test_empty_str_methods xarray/tests/test_accessor_str.py::test_empty_str_methods xarray/tests/test_accessor_str.py::test_empty_str_methods xarray/tests/test_accessor_str.py::test_empty_str_methods xarray/tests/test_accessor_str.py::test_empty_str_methods xarray/tests/test_accessor_str.py::test_empty_str_methods xarray/tests/test_accessor_str.py::test_empty_str_methods /home/vsts/work/1/s/xarray/core/duck_array_ops.py:202: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison flag_array = (arr1 == arr2) | (isnull(arr1) & isnull(arr2)) xarray/tests/test_backends.py::TestZarrDictStore::test_to_zarr_append_compute_false_roundtrip xarray/tests/test_backends.py::TestZarrDictStore::test_to_zarr_append_compute_false_roundtrip xarray/tests/test_backends.py::TestZarrDirectoryStore::test_to_zarr_append_compute_false_roundtrip xarray/tests/test_backends.py::TestZarrDirectoryStore::test_to_zarr_append_compute_false_roundtrip /home/vsts/work/1/s/xarray/conventions.py:184: SerializationWarning: variable None has data in the form of a dask array with dtype=object, which means it is being loaded into memory to determine a data type that can be safely stored on disk. To avoid this, coerce this variable to a fixed-size dtype with astype() before saving it. SerializationWarning, xarray/tests/test_backends.py::TestScipyInMemoryData::test_zero_dimensional_variable /usr/share/miniconda/envs/xarray-tests/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject return f(args, *kwds) xarray/tests/test_backends.py::TestPseudoNetCDFFormat::test_ict_format xarray/tests/test_backends.py::TestPseudoNetCDFFormat::test_ict_format_write xarray/tests/test_backends.py::TestPseudoNetCDFFormat::test_ict_format_write /usr/share/miniconda/envs/xarray-tests/lib/python3.7/site-packages/PseudoNetCDF/icarttfiles/ffi1001.py:80: DeprecationWarning: 'U' mode is deprecated f = openf(path, 'rU', encoding = encoding) xarray/tests/test_backends.py::TestPseudoNetCDFFormat::test_ict_format xarray/tests/test_backends.py::TestPseudoNetCDFFormat::test_ict_format_write /usr/share/miniconda/envs/xarray-tests/lib/python3.7/site-packages/_pytest/python.py:170: RuntimeWarning: deallocating CachingFileManager(<function pncopen at 0x7f252e49a6a8>, '/home/vsts/work/1/s/xarray/tests/data/example.ict', kwargs={'format': 'ffi1001'}), but file is not already closed. This may indicate a bug. result = testfunction(**testargs) xarray/tests/test_backends.py::TestPseudoNetCDFFormat::test_uamiv_format_read xarray/tests/test_backends.py::TestPseudoNetCDFFormat::test_uamiv_format_mfread xarray/tests/test_backends.py::TestPseudoNetCDFFormat::test_uamiv_format_write xarray/tests/test_backends.py::TestPseudoNetCDFFormat::test_uamiv_format_write /usr/share/miniconda/envs/xarray-tests/lib/python3.7/site-packages/PseudoNetCDF/camxfiles/uamiv/Memmap.py:141: UserWarning: UnboundLocalError("local variable 'dims' referenced before assignment") warn(repr(e)) xarray/tests/test_backends.py::TestPseudoNetCDFFormat::test_uamiv_format_mfread
/home/vsts/work/1/s/xarray/tests/test_backends.py:103: FutureWarning: In xarray version 0.13 the default behaviour of
xarray/tests/test_backends.py::TestPseudoNetCDFFormat::test_uamiv_format_mfread
/home/vsts/work/1/s/xarray/backends/api.py:931: FutureWarning: Also xarray/tests/test_coding_times.py::test_cf_datetime_nan[num_dates1-days since 2000-01-01-expected_list1] xarray/tests/test_coding_times.py::test_cf_datetime_nan[num_dates2-days since 2000-01-01-expected_list2] /usr/share/miniconda/envs/xarray-tests/lib/python3.7/site-packages/numpy/testing/_private/utils.py:913: FutureWarning: Converting timezone-aware DatetimeArray to timezone-naive ndarray with 'datetime64[ns]' dtype. In the future, this will return an ndarray with 'object' dtype where each element is a 'pandas.Timestamp' with the correct 'tz'. To accept the future behavior, pass 'dtype=object'. To keep the old behavior, pass 'dtype="datetime64[ns]"'. verbose=verbose, header='Arrays are not equal') xarray/tests/test_dataarray.py::TestDataArray::test_drop_index_labels xarray/tests/test_dataarray.py::TestDataArray::test_drop_index_labels xarray/tests/test_dataarray.py::TestDataArray::test_drop_index_labels /home/vsts/work/1/s/xarray/core/dataarray.py:1842: DeprecationWarning: dropping dimensions using list-like labels is deprecated; use dict-like arguments. ds = self._to_temp_dataset().drop(labels, dim, errors=errors) xarray/tests/test_dataset.py::TestDataset::test_drop_index_labels /home/vsts/work/1/s/xarray/tests/test_dataset.py:2066: DeprecationWarning: dropping dimensions using list-like labels is deprecated; use dict-like arguments. actual = data.drop(["a"], "x") xarray/tests/test_dataset.py::TestDataset::test_drop_index_labels /home/vsts/work/1/s/xarray/tests/test_dataset.py:2070: DeprecationWarning: dropping dimensions using list-like labels is deprecated; use dict-like arguments. actual = data.drop(["a", "b"], "x") xarray/tests/test_dataset.py::TestDataset::test_drop_index_labels /home/vsts/work/1/s/xarray/tests/test_dataset.py:2078: DeprecationWarning: dropping dimensions using list-like labels is deprecated; use dict-like arguments. data.drop(["c"], dim="x") xarray/tests/test_dataset.py::TestDataset::test_drop_index_labels /home/vsts/work/1/s/xarray/tests/test_dataset.py:2080: DeprecationWarning: dropping dimensions using list-like labels is deprecated; use dict-like arguments. actual = data.drop(["c"], dim="x", errors="ignore") xarray/tests/test_dataset.py::TestDataset::test_drop_index_labels /home/vsts/work/1/s/xarray/tests/test_dataset.py:2086: DeprecationWarning: dropping dimensions using list-like labels is deprecated; use dict-like arguments. actual = data.drop(["a", "b", "c"], "x", errors="ignore") xarray/tests/test_dataset.py::TestDataset::test_drop_labels_by_keyword /home/vsts/work/1/s/xarray/tests/test_dataset.py:2135: DeprecationWarning: dropping dimensions using list-like labels is deprecated; use dict-like arguments. data.drop(labels=["a"], dim="x", x="a") xarray/tests/test_dataset.py::TestDataset::test_convert_dataframe_with_many_types_and_multiindex /home/vsts/work/1/s/xarray/core/dataset.py:3959: FutureWarning: Converting timezone-aware DatetimeArray to timezone-naive ndarray with 'datetime64[ns]' dtype. In the future, this will return an ndarray with 'object' dtype where each element is a 'pandas.Timestamp' with the correct 'tz'. To accept the future behavior, pass 'dtype=object'. To keep the old behavior, pass 'dtype="datetime64[ns]"'. data = np.asarray(series).reshape(shape) xarray/tests/test_dataset.py::TestDataset::test_convert_dataframe_with_many_types_and_multiindex /usr/share/miniconda/envs/xarray-tests/lib/python3.7/site-packages/pandas/core/apply.py:321: FutureWarning: Converting timezone-aware DatetimeArray to timezone-naive ndarray with 'datetime64[ns]' dtype. In the future, this will return an ndarray with 'object' dtype where each element is a 'pandas.Timestamp' with the correct 'tz'. To accept the future behavior, pass 'dtype=object'. To keep the old behavior, pass 'dtype="datetime64[ns]"'. results[i] = self.f(v) xarray/tests/test_distributed.py::test_dask_distributed_cfgrib_integration_test /usr/share/miniconda/envs/xarray-tests/lib/python3.7/site-packages/tornado/gen.py:772: RuntimeWarning: deallocating CachingFileManager(<function open at 0x7f2527b49bf8>, '/tmp/tmpt4tmnjh3/temp-2044.tif', mode='r', kwargs={}), but file is not already closed. This may indicate a bug. self.future = convert_yielded(yielded) xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-False-False-float-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-False-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-False-False-int-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-False-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-False-False-float32-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-False-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-False-False-bool_-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-False-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-False-False-str-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-False-False-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-True-False-float-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-True-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-True-False-int-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-True-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-True-False-float32-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-True-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-True-False-bool_-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-True-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-True-False-str-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-min-True-False-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-False-False-float-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-False-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-False-False-int-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-False-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-False-False-float32-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-False-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-False-False-bool_-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-False-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-False-False-str-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-False-False-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-True-False-float-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-True-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-True-False-int-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-True-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-True-False-float32-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-True-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-True-False-bool_-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-True-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-True-False-str-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-False-max-True-False-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-False-True-bool_-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-False-True-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-False-True-str-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-False-True-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-False-False-float-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-False-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-False-False-int-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-False-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-False-False-float32-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-False-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-False-False-bool_-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-False-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-False-False-str-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-False-False-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-True-True-bool_-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-True-True-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-True-True-str-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-True-True-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-True-False-float-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-True-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-True-False-int-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-True-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-True-False-float32-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-True-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-True-False-bool_-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-True-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-True-False-str-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-min-True-False-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-False-True-bool_-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-False-True-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-False-True-str-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-False-True-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-False-False-float-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-False-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-False-False-int-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-False-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-False-False-float32-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-False-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-False-False-bool_-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-False-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-False-False-str-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-False-False-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-True-True-bool_-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-True-True-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-True-True-str-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-True-True-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-True-False-float-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-True-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-True-False-int-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-True-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-True-False-float32-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-True-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-True-False-bool_-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-True-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-True-False-str-1] xarray/tests/test_duck_array_ops.py::test_argmin_max[x-True-max-True-False-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-min-False-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-min-False-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-min-False-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-min-False-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-min-False-False-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-min-True-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-min-True-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-min-True-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-min-True-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-min-True-False-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-max-False-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-max-False-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-max-False-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-max-False-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-max-False-False-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-max-True-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-max-True-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-max-True-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-max-True-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-False-max-True-False-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-min-False-True-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-min-False-True-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-min-False-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-min-False-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-min-False-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-min-False-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-min-False-False-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-min-True-True-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-min-True-True-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-min-True-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-min-True-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-min-True-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-min-True-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-min-True-False-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-max-False-True-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-max-False-True-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-max-False-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-max-False-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-max-False-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-max-False-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-max-False-False-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-max-True-True-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-max-True-True-str-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-max-True-False-float-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-max-True-False-int-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-max-True-False-float32-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-max-True-False-bool_-2] xarray/tests/test_duck_array_ops.py::test_argmin_max[y-True-max-True-False-str-2] /home/vsts/work/1/s/xarray/core/dataarray.py:1842: FutureWarning: dropping coordinates using key values of dict-like labels is deprecated; use drop_vars or a list of coordinates. ds = self._to_temp_dataset().drop(labels, dim, errors=errors) xarray/tests/test_plot.py::TestPlotStep::test_step /home/vsts/work/1/s/xarray/plot/plot.py:321: MatplotlibDeprecationWarning: Passing the drawstyle with the linestyle as a single string is deprecated since Matplotlib 3.1 and support will be removed in 3.3; please pass the drawstyle separately using the drawstyle keyword argument to Line2D or set_drawstyle() method (or ds/set_ds()). primitive = ax.plot(xplt_val, yplt_val, args, *kwargs) xarray/tests/test_print_versions.py::test_show_versions /usr/share/miniconda/envs/xarray-tests/lib/python3.7/site-packages/setuptools/depends.py:2: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses import imp xarray/tests/test_sparse.py::test_dataarray_method[obj.roll((), {'x': 2})-True] /home/vsts/work/1/s/xarray/core/dataarray.py:2632: FutureWarning: roll_coords will be set to False in the future. Explicitly set roll_coords to silence warning. shifts=shifts, roll_coords=roll_coords, *shifts_kwargs xarray/tests/test_sparse.py::TestSparseDataArrayAndDataset::test_ufuncs /home/vsts/work/1/s/xarray/tests/test_sparse.py:711: PendingDeprecationWarning: xarray.ufuncs will be deprecated when xarray no longer supports versions of numpy older than v1.17. Instead, use numpy ufuncs directly. assert_equal(np.sin(x), xu.sin(x)) xarray/tests/test_sparse.py::TestSparseDataArrayAndDataset::test_ufuncs /home/vsts/work/1/s/xarray/core/dataarray.py:2393: PendingDeprecationWarning: xarray.ufuncs will be deprecated when xarray no longer supports versions of numpy older than v1.17. Instead, use numpy ufuncs directly. return self.array_wrap(f(self.variable.data, args, *kwargs)) xarray/tests/test_sparse.py::TestSparseDataArrayAndDataset::test_groupby_bins /home/vsts/work/1/s/xarray/core/groupby.py:780: FutureWarning: Default reduction dimension will be changed to the grouped dimension in a future version of xarray. To silence this warning, pass dim=xarray.ALL_DIMS explicitly. **kwargs -- Docs: https://docs.pytest.org/en/latest/warnings.html ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3266/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
295959111 | MDU6SXNzdWUyOTU5NTkxMTE= | 1900 | Representing & checking Dataset schemas | max-sixty 5635139 | open | 0 | 15 | 2018-02-09T18:06:08Z | 2022-07-14T11:28:37Z | MEMBER | What would be the best way to canonically describe a dataset, which could be read by both humans and machines? For example, frequently in our code we have docstrings which look something like: ``` def get_returns(security_ids): """ Retuns mega-dimensional dataset which gives recent returns for a set of securities by: - Date - Return (raw / economic / smoothed / etc) - Scaling (constant / risk_scaled) - Span - Hedged vs Unhedged
``` This helps when attempting to understand what code is doing while only reading it. But this isn't consistent between docstrings and can't be read or checked by a machine. Has anyone solved this problem / have any suggestions for resources out there? Tangentially related to https://github.com/python/typing/issues/513 (but our issues are less about the type, dimension sizes, and more about the arrays within a dataset, their dimensions, and their names) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1900/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1125030343 | I_kwDOAMm_X85DDpnH | 6243 | Maintenance improvements | max-sixty 5635139 | open | 0 | 0 | 2022-02-05T21:01:51Z | 2022-02-05T21:01:51Z | MEMBER | Is your feature request related to a problem?At the end of the dev call, we discussed ways to do better at maintenance. I'd like to make Xarray a wonderful place to contribute, partly because it was so formative for me in becoming more involved with software engineering. Describe the solution you'd likeWe've already come far, because of the hard work of many of us! A few ideas, in increasing order of radical-ness - We looked at @andersy005's dashboards for PRs & Issues. Could we expose this, both to hold ourselves accountable and signal to potential contributors that we care about turnaround time for their contributions? - Is there a systematic way of understanding who should review something? - FWIW a few months ago I looked for a bot that would recommend a reviewer based on who had contributed code in the past, which I think I've seen before. But I couldn't find one generally available. This would be really helpful — we wouldn't have n people each assessing whether they're the best reviewer for each contribution. If anyone does better than me at finding something like this, that would be awesome. - Could we add a label so people can say "now I'm waiting for a review", and track how long those stay up? - Ensuring the 95th percentile is < 2 days is more important than the median being in the hours. It does pain me when I see PRs get dropped for a few weeks. TBC, I'm as responsible as anyone. - Could we have a bot that asks for feedback on the review process — i.e. "I received a prompt and helpful review", "I would recommend a friend contribute to Xarray", etc? Describe alternatives you've consideredNo response Additional contextThere's always a danger with making stats legible that Goodhart's law strikes. And sometimes stats are not joyful, and lots of people come here for joy. So probably there's a tradeoff. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6243/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
907715257 | MDU6SXNzdWU5MDc3MTUyNTc= | 5409 | Split up tests? | max-sixty 5635139 | open | 0 | 4 | 2021-05-31T21:07:53Z | 2021-06-16T15:51:19Z | MEMBER | Currently a large share of our tests are in There's a case for splitting these up:
- Many of the tests are somewhat duplicated between the files (and If we do this, we could start on the margin — new tests around some specific functionality — e.g. join / rolling / reindex / stack (just a few from browsing through) — could go into a new respective |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5409/reactions", "total_count": 5, "+1": 5, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
521754870 | MDU6SXNzdWU1MjE3NTQ4NzA= | 3514 | Should we cache some small properties? | max-sixty 5635139 | open | 0 | 7 | 2019-11-12T19:28:21Z | 2019-11-16T04:32:11Z | MEMBER | I was doing some profiling on Pandas uses cache_readonly for these cases. Here's a case: we call I don't think this is the solution to performance issues, and there's some additional complexity. Could they be easy & small wins, though? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3514/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
366510937 | MDU6SXNzdWUzNjY1MTA5Mzc= | 2460 | Update docs to include how to Join using a non-index coord | max-sixty 5635139 | open | 0 | max-sixty 5635139 | 3 | 2018-10-03T20:19:15Z | 2018-11-01T15:37:44Z | MEMBER | I originally posted this on SO, as I thought it was a user question rather than a library issue. But after working on it more today, I'm not so sure. I'm trying to do a 'join' in xarray, but using a non-index coordinate rather than a shared dim. I have a Dataset indexed on 'a' with a coord on 'b', and a DataArray indexed on 'b': ```python In [17]: ds=xr.Dataset(dict(a=(('x'),np.random.rand(10))), coords=dict(b=(('x'),list(range(10))))) In [18]: ds Out[18]: <xarray.Dataset> Dimensions: (x: 10) Coordinates: b (x) int64 0 1 2 3 4 5 6 7 8 9 Dimensions without coordinates: x Data variables: a (x) float64 0.3634 0.2132 0.6945 0.5359 0.1053 0.07045 0.5945 ... In [19]: da=xr.DataArray(np.random.rand(10), dims=('b',), coords=dict(b=(('b'),list(range(10))))) In [20]: da Out[20]: <xarray.DataArray (b: 10)> array([0.796987, 0.275992, 0.747882, 0.240374, 0.435143, 0.285271, 0.753582, 0.556038, 0.365889, 0.434844]) Coordinates: * b (b) int64 0 1 2 3 4 5 6 7 8 9 ``` Can I add da onto my dataset, by joining on ds.b equalling da.b? The result would be:
(for completeness - the data isn't current in the correct position) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2460/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);