issue_comments
32 rows where user = 15331990 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, reactions, created_at (date), updated_at (date)
user 1
- ahuang11 · 32 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1462537234 | https://github.com/pydata/xarray/issues/5985#issuecomment-1462537234 | https://api.github.com/repos/pydata/xarray/issues/5985 | IC_kwDOAMm_X85XLIwS | ahuang11 15331990 | 2023-03-09T18:08:10Z | 2023-03-09T18:08:10Z | CONTRIBUTOR | Thanks for following up! It's been a while so I don't remember; feel free to disregard what I said. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Formatting data array as strings? 1052753606 | |
969794751 | https://github.com/pydata/xarray/issues/5985#issuecomment-969794751 | https://api.github.com/repos/pydata/xarray/issues/5985 | IC_kwDOAMm_X845zeS_ | ahuang11 15331990 | 2021-11-16T03:27:20Z | 2021-11-16T03:27:20Z | CONTRIBUTOR | Actually would xr.DataArray.str.format work?
e.g.
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Formatting data array as strings? 1052753606 | |
840264412 | https://github.com/pydata/xarray/pull/5239#issuecomment-840264412 | https://api.github.com/repos/pydata/xarray/issues/5239 | MDEyOklzc3VlQ29tbWVudDg0MDI2NDQxMg== | ahuang11 15331990 | 2021-05-13T03:25:00Z | 2021-05-13T03:25:00Z | CONTRIBUTOR | Dont understand this
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop_duplicates for dims 873519048 | |
839934040 | https://github.com/pydata/xarray/pull/5239#issuecomment-839934040 | https://api.github.com/repos/pydata/xarray/issues/5239 | MDEyOklzc3VlQ29tbWVudDgzOTkzNDA0MA== | ahuang11 15331990 | 2021-05-12T16:47:23Z | 2021-05-12T16:47:23Z | CONTRIBUTOR | Sure. What's the reasoning for a single dimension? On Wed, May 12, 2021, 11:34 AM Maximilian Roos @.***> wrote:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop_duplicates for dims 873519048 | |
830508669 | https://github.com/pydata/xarray/pull/5089#issuecomment-830508669 | https://api.github.com/repos/pydata/xarray/issues/5089 | MDEyOklzc3VlQ29tbWVudDgzMDUwODY2OQ== | ahuang11 15331990 | 2021-05-01T03:25:47Z | 2021-05-01T03:25:47Z | CONTRIBUTOR | I failed to commit properly so see https://github.com/pydata/xarray/pull/5239 where I only do drop duplicates for dims |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop duplicates 842940980 | |
830274959 | https://github.com/pydata/xarray/pull/5089#issuecomment-830274959 | https://api.github.com/repos/pydata/xarray/issues/5089 | MDEyOklzc3VlQ29tbWVudDgzMDI3NDk1OQ== | ahuang11 15331990 | 2021-04-30T18:16:59Z | 2021-04-30T18:17:21Z | CONTRIBUTOR | I can take a look this weekend. If narrow, could simply rollback to this commit, make minor adjustments and merge. https://github.com/pydata/xarray/pull/5089/commits/28aa96ab13db72bfa6ad8b156c2c720b49ec9a04 But I personally prefer full so it'd be nice if we could come to a consensus on how to handle it~ |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop duplicates 842940980 | |
822094033 | https://github.com/pydata/xarray/pull/5089#issuecomment-822094033 | https://api.github.com/repos/pydata/xarray/issues/5089 | MDEyOklzc3VlQ29tbWVudDgyMjA5NDAzMw== | ahuang11 15331990 | 2021-04-19T00:19:17Z | 2021-04-19T00:19:17Z | CONTRIBUTOR |
Yes correct. I am not feeling well at the moment so I probably won't get to this today, but feel free to make commits! |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop duplicates 842940980 | |
813782823 | https://github.com/pydata/xarray/pull/5089#issuecomment-813782823 | https://api.github.com/repos/pydata/xarray/issues/5089 | MDEyOklzc3VlQ29tbWVudDgxMzc4MjgyMw== | ahuang11 15331990 | 2021-04-06T02:48:00Z | 2021-04-06T02:48:00Z | CONTRIBUTOR | Not sure if there's a more elegant way of implementing this. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop duplicates 842940980 | |
813179511 | https://github.com/pydata/xarray/pull/5089#issuecomment-813179511 | https://api.github.com/repos/pydata/xarray/issues/5089 | MDEyOklzc3VlQ29tbWVudDgxMzE3OTUxMQ== | ahuang11 15331990 | 2021-04-05T04:48:09Z | 2021-04-05T04:48:09Z | CONTRIBUTOR | Oh I just saw the edits with keeping the dims. I guess that would work. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop duplicates 842940980 | |
813169922 | https://github.com/pydata/xarray/pull/5089#issuecomment-813169922 | https://api.github.com/repos/pydata/xarray/issues/5089 | MDEyOklzc3VlQ29tbWVudDgxMzE2OTkyMg== | ahuang11 15331990 | 2021-04-05T04:09:26Z | 2021-04-05T04:09:26Z | CONTRIBUTOR | I prefer drop duplicate values to be under the unique() PR; maybe could be renamed as drop_duplicate_values(). Also I think preserving existing dimensions is more powerful than flattening the dimensions. On Sun, Apr 4, 2021, 11:01 PM Stephan Hoyer @.***> wrote:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop duplicates 842940980 | |
813133441 | https://github.com/pydata/xarray/pull/5091#issuecomment-813133441 | https://api.github.com/repos/pydata/xarray/issues/5091 | MDEyOklzc3VlQ29tbWVudDgxMzEzMzQ0MQ== | ahuang11 15331990 | 2021-04-05T01:14:52Z | 2021-04-05T01:15:51Z | CONTRIBUTOR | What if we added coordinates/dims to it and it returns a stacked dimension if multiple dims? ``` def unique(da): da_stack = da.stack({'tmp_dim': da.dims}) _, index = np.unique(da_stack.values, return_index=True) return da_stack.isel({'tmp_dim': index}) da = xr.DataArray([[[0, 1, 1], [2, 3, 4], [4, 5, 6]], [[7, 8, 9], [10, 11, 12], [13, 14, 15]]],
coords={'lat': [0, 1, 2], 'lon': [4, 5, 6], 'time': [7, 8]}, dims=['time', 'lat', 'lon'])
unique(da) # would be da.unique()
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add unique method 843961481 | |
809814710 | https://github.com/pydata/xarray/pull/5089#issuecomment-809814710 | https://api.github.com/repos/pydata/xarray/issues/5089 | MDEyOklzc3VlQ29tbWVudDgwOTgxNDcxMA== | ahuang11 15331990 | 2021-03-30T00:27:20Z | 2021-04-04T22:26:02Z | CONTRIBUTOR |
~~Let's start with just dims for now.~~ Okay, since I had some time, I decided to do coords too. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop duplicates 842940980 | |
809822634 | https://github.com/pydata/xarray/pull/5089#issuecomment-809822634 | https://api.github.com/repos/pydata/xarray/issues/5089 | MDEyOklzc3VlQ29tbWVudDgwOTgyMjYzNA== | ahuang11 15331990 | 2021-03-30T00:52:18Z | 2021-03-30T00:52:18Z | CONTRIBUTOR | Not sure how to fix this: ``` xarray/core/dataset.py:7111: error: Keywords must be strings Found 1 error in 1 file (checked 138 source files) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add drop duplicates 842940980 | |
781663427 | https://github.com/pydata/xarray/issues/4588#issuecomment-781663427 | https://api.github.com/repos/pydata/xarray/issues/4588 | MDEyOklzc3VlQ29tbWVudDc4MTY2MzQyNw== | ahuang11 15331990 | 2021-02-18T22:01:59Z | 2021-02-18T22:01:59Z | CONTRIBUTOR | Yes I want to drop the padding (remove the nans from the beginning) On Thu, Feb 18, 2021, 3:44 PM Deepak Cherian notifications@github.com wrote:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
drop keyword in ds.rolling(time=7, drop=True).mean()? 744274576 | |
753477348 | https://github.com/pydata/xarray/issues/4647#issuecomment-753477348 | https://api.github.com/repos/pydata/xarray/issues/4647 | MDEyOklzc3VlQ29tbWVudDc1MzQ3NzM0OA== | ahuang11 15331990 | 2021-01-02T14:01:49Z | 2021-01-02T14:01:49Z | CONTRIBUTOR | Sure. On Sat, Jan 2, 2021, 6:38 AM Daniel Mesejo-León notifications@github.com wrote:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
DataArray transpose inconsistent with Dataset Ellipsis usage 756415834 | |
749323873 | https://github.com/pydata/xarray/issues/4641#issuecomment-749323873 | https://api.github.com/repos/pydata/xarray/issues/4641 | MDEyOklzc3VlQ29tbWVudDc0OTMyMzg3Mw== | ahuang11 15331990 | 2020-12-22T03:55:33Z | 2020-12-22T03:55:33Z | CONTRIBUTOR | Maybe a simple fix would be to replace Significantly faster than numpy.unique. Includes NA values. ``` https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.unique.html |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Wrong hue assignment in scatter plot 755105132 | |
738187109 | https://github.com/pydata/xarray/issues/4647#issuecomment-738187109 | https://api.github.com/repos/pydata/xarray/issues/4647 | MDEyOklzc3VlQ29tbWVudDczODE4NzEwOQ== | ahuang11 15331990 | 2020-12-03T18:10:44Z | 2020-12-03T18:10:44Z | CONTRIBUTOR |
I actually like it handling non_existing_dims automatically; maybe could be keyword though:
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
DataArray transpose inconsistent with Dataset Ellipsis usage 756415834 | |
671104032 | https://github.com/pydata/xarray/issues/3169#issuecomment-671104032 | https://api.github.com/repos/pydata/xarray/issues/3169 | MDEyOklzc3VlQ29tbWVudDY3MTEwNDAzMg== | ahuang11 15331990 | 2020-08-09T21:37:20Z | 2020-08-09T21:37:20Z | CONTRIBUTOR | I think this is fixed in the latest master. ``` import xarray as xr import numpy as np import cartopy.crs as ccrs da = xr.tutorial.open_dataset('air_temperature')['air'] p = da.isel(time=[0, 1]).plot( transform=ccrs.PlateCarree(), col='time', subplot_kws={'projection': ccrs.Orthographic(-80, 35)} ) for ax in p.axes.flat: ax.coastlines() ax.gridlines() ```
However if you try iterating over the axes, it will crash because for ax in p.axes.flat: ax.coastlines() ax.gridlines() ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Plotting inconsistencies with Cartopy 474463902 | |
671101989 | https://github.com/pydata/xarray/issues/2568#issuecomment-671101989 | https://api.github.com/repos/pydata/xarray/issues/2568 | MDEyOklzc3VlQ29tbWVudDY3MTEwMTk4OQ== | ahuang11 15331990 | 2020-08-09T21:15:41Z | 2020-08-09T21:15:41Z | CONTRIBUTOR | If I were to make a PR, where would this method reside? Would it be under dataset.py and dataarray.py? Also, would I simply call np.select inside the method, and if so, how would I add support for dask? My minimal example atm: ``` import xarray as xr import numpy as np import hvplot.xarray ds = xr.tutorial.open_dataset('air_temperature').isel(time=0) ds['air_cats'] = (
('lat', 'lon'),
np.select([ds['air'].values >= 273.15, ds['air'].values < 273.15], ['above freezing', 'below freezing'])
)
ds.hvplot('lon', 'lat', hover_cols=['air_cats'])
```
|
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray equivalent of np.place or df.map(mapping)? 383945783 | |
629384825 | https://github.com/pydata/xarray/issues/4066#issuecomment-629384825 | https://api.github.com/repos/pydata/xarray/issues/4066 | MDEyOklzc3VlQ29tbWVudDYyOTM4NDgyNQ== | ahuang11 15331990 | 2020-05-15T17:28:09Z | 2020-05-15T17:28:09Z | CONTRIBUTOR | Neat solution! Thanks! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Feature request: ds.interp_like() keyword to exclude certain dimensions 619089111 | |
599133152 | https://github.com/pydata/xarray/issues/2568#issuecomment-599133152 | https://api.github.com/repos/pydata/xarray/issues/2568 | MDEyOklzc3VlQ29tbWVudDU5OTEzMzE1Mg== | ahuang11 15331990 | 2020-03-14T20:48:52Z | 2020-03-14T20:48:52Z | CONTRIBUTOR | No, not from me at least. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray equivalent of np.place or df.map(mapping)? 383945783 | |
495069997 | https://github.com/pydata/xarray/pull/2144#issuecomment-495069997 | https://api.github.com/repos/pydata/xarray/issues/2144 | MDEyOklzc3VlQ29tbWVudDQ5NTA2OTk5Nw== | ahuang11 15331990 | 2019-05-23T05:13:46Z | 2019-05-23T05:13:46Z | CONTRIBUTOR | Would also like to see this move forward and would be happy to help if needed. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add strftime() to datetime accessor 323823894 | |
494914857 | https://github.com/pydata/xarray/issues/2981#issuecomment-494914857 | https://api.github.com/repos/pydata/xarray/issues/2981 | MDEyOklzc3VlQ29tbWVudDQ5NDkxNDg1Nw== | ahuang11 15331990 | 2019-05-22T18:34:03Z | 2019-05-22T18:34:03Z | CONTRIBUTOR | Cool; that's good to know that I can set a title on the top left and top right side together. Thanks. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Plot title using loc keyword doesn't override automated title 447268579 | |
489293638 | https://github.com/pydata/xarray/pull/2729#issuecomment-489293638 | https://api.github.com/repos/pydata/xarray/issues/2729 | MDEyOklzc3VlQ29tbWVudDQ4OTI5MzYzOA== | ahuang11 15331990 | 2019-05-04T04:46:34Z | 2019-05-04T04:47:30Z | CONTRIBUTOR | This looks awesome; it would be really nice to have built-in xarray animation support!
Also wanted to point out while that's progressing along, hvplot supports 2D animations. https://hvplot.pyviz.org/ ``` import xarray as xr import hvplot.xarray import holoviews as hv hv.extension('matplotlib') ds = xr.tutorial.open_dataset('air_temperature').isel(time=slice(0, 15)) hmap = ds.hvplot('lon', 'lat', dynamic=False).opts(fig_size=300, clim=(230, 300)) hv.save(hmap, 'anim.html', fmt='scrubber') ---from IPython.core.display import display, HTML
display(HTML('anim.html'))
```
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
[WIP] Feature: Animated 1D plots 404945709 | |
469477745 | https://github.com/pydata/xarray/issues/2795#issuecomment-469477745 | https://api.github.com/repos/pydata/xarray/issues/2795 | MDEyOklzc3VlQ29tbWVudDQ2OTQ3Nzc0NQ== | ahuang11 15331990 | 2019-03-05T00:01:58Z | 2019-03-05T00:01:58Z | CONTRIBUTOR | Right, it would return a 1D numpy or dask array. I suppose I'm used to simply typing pd.Series().unique() rather than np.unique(pd.Series()). I use it in for loops primarily.
|
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add "unique()" method, mimicking pandas 415774106 | |
457797022 | https://github.com/pydata/xarray/issues/2711#issuecomment-457797022 | https://api.github.com/repos/pydata/xarray/issues/2711 | MDEyOklzc3VlQ29tbWVudDQ1Nzc5NzAyMg== | ahuang11 15331990 | 2019-01-26T03:22:07Z | 2019-01-26T03:22:07Z | CONTRIBUTOR | Cool, didn't know the function had different kwargs from the method. Thanks! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Substituting values based on condition 403350812 | |
441344567 | https://github.com/pydata/xarray/issues/2568#issuecomment-441344567 | https://api.github.com/repos/pydata/xarray/issues/2568 | MDEyOklzc3VlQ29tbWVudDQ0MTM0NDU2Nw== | ahuang11 15331990 | 2018-11-24T05:17:09Z | 2018-11-24T05:25:45Z | CONTRIBUTOR | Thanks for the quick replies! Is there interest in making this a built-in function? If so, I can help contribute a PR. Also wondering about a way to wrap logic to that mapping. Like below 0, replace with -1, between 0 and 10, replace with 5, and above 10, replace with 15 which is possible with three np.place statements I think, but have to think in backwards logic with ds.where(). |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray equivalent of np.place or df.map(mapping)? 383945783 | |
441342986 | https://github.com/pydata/xarray/issues/2568#issuecomment-441342986 | https://api.github.com/repos/pydata/xarray/issues/2568 | MDEyOklzc3VlQ29tbWVudDQ0MTM0Mjk4Ng== | ahuang11 15331990 | 2018-11-24T04:34:17Z | 2018-11-24T04:34:17Z | CONTRIBUTOR | I guess I'm thinking about more complex cases such as changing 0 -> 50, 1 -> 29, 2 -> 10
Thoughts on simplifying this? |
{ "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Xarray equivalent of np.place or df.map(mapping)? 383945783 | |
411275886 | https://github.com/pydata/xarray/issues/1875#issuecomment-411275886 | https://api.github.com/repos/pydata/xarray/issues/1875 | MDEyOklzc3VlQ29tbWVudDQxMTI3NTg4Ng== | ahuang11 15331990 | 2018-08-08T03:51:54Z | 2018-08-08T03:51:54Z | CONTRIBUTOR | Option 2 sounds good; I'll try putting together a pull request sometime, hopefully within a week! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
roll doesn't handle periodic boundary conditions well 293345254 | |
411219752 | https://github.com/pydata/xarray/issues/1875#issuecomment-411219752 | https://api.github.com/repos/pydata/xarray/issues/1875 | MDEyOklzc3VlQ29tbWVudDQxMTIxOTc1Mg== | ahuang11 15331990 | 2018-08-07T22:11:42Z | 2018-08-07T22:11:42Z | CONTRIBUTOR | Just wanted to bump this! Would make my hack neater to interpolate across the prime meridian.
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
roll doesn't handle periodic boundary conditions well 293345254 | |
325163311 | https://github.com/pydata/xarray/issues/1527#issuecomment-325163311 | https://api.github.com/repos/pydata/xarray/issues/1527 | MDEyOklzc3VlQ29tbWVudDMyNTE2MzMxMQ== | ahuang11 15331990 | 2017-08-26T21:38:35Z | 2017-08-26T21:38:35Z | CONTRIBUTOR | I don't know if you tried this yet, but if you changed the length to 365 and keep it with non-leap year, it still errors out so I guess the root issue is with how time.dayofyear uses 366 days? ``` import xarray as xr import numpy as np import pandas as pd d1 = xr.DataArray(np.zeros(12000), [('time', pd.date_range('2004-01-01', freq='D', periods=12000))]) d2 = xr.DataArray(np.zeros((365, 10)), {'time': pd.date_range('1979-01-01', freq='D', periods=365), 'x': ('x', np.arange(10))}, dims=['time', 'x']) d1.groupby('time.month') * d2.groupby('time.month').mean('time') print('this works') no workd1.groupby('time.dayofyear') * d2.groupby('time.dayofyear').mean('time') print('this doesn\'t work') ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Binary operations with ds.groupby('time.dayofyear') errors out, but ds.groupby('time.month') works 253107677 | |
325149596 | https://github.com/pydata/xarray/issues/1527#issuecomment-325149596 | https://api.github.com/repos/pydata/xarray/issues/1527 | MDEyOklzc3VlQ29tbWVudDMyNTE0OTU5Ng== | ahuang11 15331990 | 2017-08-26T17:28:28Z | 2017-08-26T17:32:00Z | CONTRIBUTOR | Thanks for your quick response!
From If you swap the length it errors out. ``` import xarray as xr import numpy as np import pandas as pd d1 = xr.DataArray(np.zeros(12000), [('time', pd.date_range('1979-01-01', freq='D', periods=12000))]) d2 = xr.DataArray(np.zeros((366, 10)), {'time': pd.date_range('1979-01-01', freq='D', periods=366), 'x': ('x', np.arange(10))}, dims=['time', 'x']) d1.groupby('time.month') - d2.groupby('time.month').mean('time') print('this works') no workd1.groupby('time.dayofyear') - d2.groupby('time.dayofyear').mean('time') print('this doesn\'t work') ``` ``` <xarray.DataArray (time: 12000, x: 10)> array([[ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], ..., [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0., 0., ..., 0., 0., 0.]]) Coordinates: * x (x) int64 0 1 2 3 4 5 6 7 8 9 * time (time) datetime64[ns] 1979-01-01 1979-01-02 1979-01-03 ... month (time) int64 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... this works KeyError Traceback (most recent call last) <ipython-input-24-4c92f88d0a14> in <module>() 10 11 # no work ---> 12 d1.groupby('time.dayofyear') - d2.groupby('time.dayofyear').mean('time') 13 print('this doesn\'t work') /data/keeling/a/ahuang11/anaconda3/lib/python3.6/site-packages/xarray/core/groupby.py in func(self, other) 316 g = f if not reflexive else lambda x, y: f(y, x) 317 applied = self._yield_binary_applied(g, other) --> 318 combined = self._combine(applied) 319 return combined 320 return func /data/keeling/a/ahuang11/anaconda3/lib/python3.6/site-packages/xarray/core/groupby.py in _combine(self, applied, shortcut) 532 combined = self._concat_shortcut(applied, dim, positions) 533 else: --> 534 combined = concat(applied, dim) 535 combined = _maybe_reorder(combined, dim, positions) 536 /data/keeling/a/ahuang11/anaconda3/lib/python3.6/site-packages/xarray/core/combine.py in concat(objs, dim, data_vars, coords, compat, positions, indexers, mode, concat_over) 118 raise TypeError('can only concatenate xarray Dataset and DataArray ' 119 'objects, got %s' % type(first_obj)) --> 120 return f(objs, dim, data_vars, coords, compat, positions) 121 122 /data/keeling/a/ahuang11/anaconda3/lib/python3.6/site-packages/xarray/core/combine.py in _dataarray_concat(arrays, dim, data_vars, coords, compat, positions) 304 305 ds = _dataset_concat(datasets, dim, data_vars, coords, compat, --> 306 positions) 307 return arrays[0]._from_temp_dataset(ds, name) 308 /data/keeling/a/ahuang11/anaconda3/lib/python3.6/site-packages/xarray/core/combine.py in _dataset_concat(datasets, dim, data_vars, coords, compat, positions) 210 datasets = align(*datasets, join='outer', copy=False, exclude=[dim]) 211 --> 212 concat_over = _calc_concat_over(datasets, dim, data_vars, coords) 213 214 def insert_result_variable(k, v): /data/keeling/a/ahuang11/anaconda3/lib/python3.6/site-packages/xarray/core/combine.py in _calc_concat_over(datasets, dim, data_vars, coords) 190 if dim in v.dims) 191 concat_over.update(process_subset_opt(data_vars, 'data_vars')) --> 192 concat_over.update(process_subset_opt(coords, 'coords')) 193 if dim in datasets[0]: 194 concat_over.add(dim) /data/keeling/a/ahuang11/anaconda3/lib/python3.6/site-packages/xarray/core/combine.py in process_subset_opt(opt, subset) 165 for ds in datasets[1:]) 166 # all nonindexes that are not the same in each dataset --> 167 concat_new = set(k for k in getattr(datasets[0], subset) 168 if k not in concat_over and differs(k)) 169 elif opt == 'all': /data/keeling/a/ahuang11/anaconda3/lib/python3.6/site-packages/xarray/core/combine.py in <genexpr>(.0) 166 # all nonindexes that are not the same in each dataset 167 concat_new = set(k for k in getattr(datasets[0], subset) --> 168 if k not in concat_over and differs(k)) 169 elif opt == 'all': 170 concat_new = (set(getattr(datasets[0], subset)) - /data/keeling/a/ahuang11/anaconda3/lib/python3.6/site-packages/xarray/core/combine.py in differs(vname) 163 v = datasets[0].variables[vname] 164 return any(not ds.variables[vname].equals(v) --> 165 for ds in datasets[1:]) 166 # all nonindexes that are not the same in each dataset 167 concat_new = set(k for k in getattr(datasets[0], subset) /data/keeling/a/ahuang11/anaconda3/lib/python3.6/site-packages/xarray/core/combine.py in <genexpr>(.0) 163 v = datasets[0].variables[vname] 164 return any(not ds.variables[vname].equals(v) --> 165 for ds in datasets[1:]) 166 # all nonindexes that are not the same in each dataset 167 concat_new = set(k for k in getattr(datasets[0], subset) /data/keeling/a/ahuang11/anaconda3/lib/python3.6/site-packages/xarray/core/utils.py in getitem(self, key) 288 289 def getitem(self, key): --> 290 return self.mapping[key] 291 292 def iter(self): KeyError: 'x' ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Binary operations with ds.groupby('time.dayofyear') errors out, but ds.groupby('time.month') works 253107677 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 17