issue_comments: 325163311
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/1527#issuecomment-325163311 | https://api.github.com/repos/pydata/xarray/issues/1527 | 325163311 | MDEyOklzc3VlQ29tbWVudDMyNTE2MzMxMQ== | 15331990 | 2017-08-26T21:38:35Z | 2017-08-26T21:38:35Z | CONTRIBUTOR | I don't know if you tried this yet, but if you changed the length to 365 and keep it with non-leap year, it still errors out so I guess the root issue is with how time.dayofyear uses 366 days? ``` import xarray as xr import numpy as np import pandas as pd d1 = xr.DataArray(np.zeros(12000), [('time', pd.date_range('2004-01-01', freq='D', periods=12000))]) d2 = xr.DataArray(np.zeros((365, 10)), {'time': pd.date_range('1979-01-01', freq='D', periods=365), 'x': ('x', np.arange(10))}, dims=['time', 'x']) d1.groupby('time.month') * d2.groupby('time.month').mean('time') print('this works') no workd1.groupby('time.dayofyear') * d2.groupby('time.dayofyear').mean('time') print('this doesn\'t work') ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
253107677 |