issue_comments: 813133441
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/pull/5091#issuecomment-813133441 | https://api.github.com/repos/pydata/xarray/issues/5091 | 813133441 | MDEyOklzc3VlQ29tbWVudDgxMzEzMzQ0MQ== | 15331990 | 2021-04-05T01:14:52Z | 2021-04-05T01:15:51Z | CONTRIBUTOR | What if we added coordinates/dims to it and it returns a stacked dimension if multiple dims? ``` def unique(da): da_stack = da.stack({'tmp_dim': da.dims}) _, index = np.unique(da_stack.values, return_index=True) return da_stack.isel({'tmp_dim': index}) da = xr.DataArray([[[0, 1, 1], [2, 3, 4], [4, 5, 6]], [[7, 8, 9], [10, 11, 12], [13, 14, 15]]],
coords={'lat': [0, 1, 2], 'lon': [4, 5, 6], 'time': [7, 8]}, dims=['time', 'lat', 'lon'])
unique(da) # would be da.unique()
|
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
843961481 |
