issue_comments
5 rows where issue = 843961481 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Add unique method · 5 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
813520134 | https://github.com/pydata/xarray/pull/5091#issuecomment-813520134 | https://api.github.com/repos/pydata/xarray/issues/5091 | MDEyOklzc3VlQ29tbWVudDgxMzUyMDEzNA== | shoyer 1217238 | 2021-04-05T17:27:49Z | 2021-04-05T17:27:49Z | MEMBER | Let's sort out |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add unique method 843961481 | |
813133441 | https://github.com/pydata/xarray/pull/5091#issuecomment-813133441 | https://api.github.com/repos/pydata/xarray/issues/5091 | MDEyOklzc3VlQ29tbWVudDgxMzEzMzQ0MQ== | ahuang11 15331990 | 2021-04-05T01:14:52Z | 2021-04-05T01:15:51Z | CONTRIBUTOR | What if we added coordinates/dims to it and it returns a stacked dimension if multiple dims? ``` def unique(da): da_stack = da.stack({'tmp_dim': da.dims}) _, index = np.unique(da_stack.values, return_index=True) return da_stack.isel({'tmp_dim': index}) da = xr.DataArray([[[0, 1, 1], [2, 3, 4], [4, 5, 6]], [[7, 8, 9], [10, 11, 12], [13, 14, 15]]],
coords={'lat': [0, 1, 2], 'lon': [4, 5, 6], 'time': [7, 8]}, dims=['time', 'lat', 'lon'])
unique(da) # would be da.unique()
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add unique method 843961481 | |
812108370 | https://github.com/pydata/xarray/pull/5091#issuecomment-812108370 | https://api.github.com/repos/pydata/xarray/issues/5091 | MDEyOklzc3VlQ29tbWVudDgxMjEwODM3MA== | shoyer 1217238 | 2021-04-01T19:00:13Z | 2021-04-01T19:00:13Z | MEMBER |
I think I would lean against adding |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add unique method 843961481 | |
811306431 | https://github.com/pydata/xarray/pull/5091#issuecomment-811306431 | https://api.github.com/repos/pydata/xarray/issues/5091 | MDEyOklzc3VlQ29tbWVudDgxMTMwNjQzMQ== | rhkleijn 32801740 | 2021-03-31T18:20:30Z | 2021-03-31T21:40:58Z | CONTRIBUTOR |
There is a precedent in xarray (it might be the only one):
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add unique method 843961481 | |
811208778 | https://github.com/pydata/xarray/pull/5091#issuecomment-811208778 | https://api.github.com/repos/pydata/xarray/issues/5091 | MDEyOklzc3VlQ29tbWVudDgxMTIwODc3OA== | max-sixty 5635139 | 2021-03-31T16:26:39Z | 2021-03-31T16:26:55Z | MEMBER | Thank you for the PR @ahuang11 ! What are people's thoughts? We don't have precedent for methods that return a numpy array. But it's unclear what xarray object this would return. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Add unique method 843961481 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 4