issue_comments
1 row where issue = 621968474 and user = 2599958 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- lazy evaluation of large arrays fails · 1 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
631670146 | https://github.com/pydata/xarray/issues/4085#issuecomment-631670146 | https://api.github.com/repos/pydata/xarray/issues/4085 | MDEyOklzc3VlQ29tbWVudDYzMTY3MDE0Ng== | hetland 2599958 | 2020-05-20T19:11:56Z | 2020-05-20T19:11:56Z | NONE | The problem was only with very large arrays, so difficult to reproduce here. Fortunately, when I just now updated to the very latest xarray/dask, the problem seems to have gone away. I was puzzled because things worked fine -- as expected -- but only for smaller arrays. I will close this issue. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
lazy evaluation of large arrays fails 621968474 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 1