home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

5 rows where issue = 532940062 and user = 2448579 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: reactions, created_at (date), updated_at (date)

user 1

  • dcherian · 5 ✖

issue 1

  • Add DataArray.pad, Dataset.pad, Variable.pad · 5 ✖

author_association 1

  • MEMBER 5
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
601217610 https://github.com/pydata/xarray/pull/3596#issuecomment-601217610 https://api.github.com/repos/pydata/xarray/issues/3596 MDEyOklzc3VlQ29tbWVudDYwMTIxNzYxMA== dcherian 2448579 2020-03-19T14:41:39Z 2020-03-19T14:41:39Z MEMBER

Merging. I've added an experimental warning to the docstrings and we can discuss the IndexVariable situation here: https://github.com/pydata/xarray/issues/3868

Thanks @mark-boer this is a major contribution for your first PR!

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add DataArray.pad, Dataset.pad, Variable.pad 532940062
598717521 https://github.com/pydata/xarray/pull/3596#issuecomment-598717521 https://api.github.com/repos/pydata/xarray/issues/3596 MDEyOklzc3VlQ29tbWVudDU5ODcxNzUyMQ== dcherian 2448579 2020-03-13T13:23:37Z 2020-03-13T13:23:37Z MEMBER

Extremely good points @mark-boer

I propose we merge and open an issue to decide what to do with IndexVariables.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add DataArray.pad, Dataset.pad, Variable.pad 532940062
596363935 https://github.com/pydata/xarray/pull/3596#issuecomment-596363935 https://api.github.com/repos/pydata/xarray/issues/3596 MDEyOklzc3VlQ29tbWVudDU5NjM2MzkzNQ== dcherian 2448579 2020-03-09T07:10:40Z 2020-03-09T07:10:40Z MEMBER

Hmm, I don't really see a solution. What do you suggest?

:) I think we need to extrapolate indexes by default. It seems like the most sensible option.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add DataArray.pad, Dataset.pad, Variable.pad 532940062
595202061 https://github.com/pydata/xarray/pull/3596#issuecomment-595202061 https://api.github.com/repos/pydata/xarray/issues/3596 MDEyOklzc3VlQ29tbWVudDU5NTIwMjA2MQ== dcherian 2448579 2020-03-05T12:22:02Z 2020-03-05T12:22:02Z MEMBER

I pushed some minor changes.

I think this is ready to go in.

The big outstanding issue is what to do about dimension coordinates or indexes. Currently this PR treats all variables in coords different from those in data_vars. I think this is confusing.

I am thinking that we want to use linear extrapolation for IndexVariables by default and apply the same padding mode to all other variables. The reasoning being that IndexVariables with NaNs are hard to deal with and it's hard to fill them in: padded["x"] = padded.x.drop_vars("x").interpolate_na("x", fill_value="extrapolate")

{
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add DataArray.pad, Dataset.pad, Variable.pad 532940062
563311262 https://github.com/pydata/xarray/pull/3596#issuecomment-563311262 https://api.github.com/repos/pydata/xarray/issues/3596 MDEyOklzc3VlQ29tbWVudDU2MzMxMTI2Mg== dcherian 2448579 2019-12-09T16:11:46Z 2019-12-09T16:11:46Z MEMBER

It seems like we have some value mismatches on dask==1.2. @fujiisoup is this the error you found?

``` =================================== FAILURES =================================== _ TestVariableWithDask.testpad[xr_arg0-np_arg0-linear_ramp] __

self = <xarray.tests.test_variable.TestVariableWithDask object at 0x7fb69b629b00> mode = 'linear_ramp', xr_arg = {'x': (2, 1)}, np_arg = ((2, 1), (0, 0), (0, 0))

@pytest.mark.parametrize(
    "mode",
    [
        pytest.param("mean", marks=pytest.mark.xfail),
        pytest.param("median", marks=pytest.mark.xfail),
        pytest.param("reflect", marks=pytest.mark.xfail),
        "edge",
        "linear_ramp",
        "maximum",
        "minimum",
        "symmetric",
        "wrap",
    ],
)
@pytest.mark.parametrize(
    "xr_arg, np_arg",
    [
        [{"x": (2, 1)}, ((2, 1), (0, 0), (0, 0))],
        [{"y": (0, 3)}, ((0, 0), (0, 3), (0, 0))],
        [{"x": (3, 1), "z": (2, 0)}, ((3, 1), (0, 0), (2, 0))],
    ],
)
def test_pad(self, mode, xr_arg, np_arg):
    data = np.arange(4 * 3 * 2).reshape(4, 3, 2)
    v = self.cls(["x", "y", "z"], data)

    actual = v.pad(mode=mode, **xr_arg)
    expected = np.pad(data, np_arg, mode=mode,)
  assert_array_equal(actual, expected)

E AssertionError: E Arrays are not equal E
E (mismatch 2.3809523809523796%) E x: array([[[ 0, 0], E [ 0, 0], E [ 0, 0]],... E y: array([[[ 0, 0], E [ 0, 0], E [ 0, 0]],...

xarray/tests/test_variable.py:821: AssertionError _ TestVariableWithDask.testpad[xr_arg1-np_arg1-linear_ramp] __

self = <xarray.tests.test_variable.TestVariableWithDask object at 0x7fb69df9eb00> mode = 'linear_ramp', xr_arg = {'y': (0, 3)}, np_arg = ((0, 0), (0, 3), (0, 0))

@pytest.mark.parametrize(
    "mode",
    [
        pytest.param("mean", marks=pytest.mark.xfail),
        pytest.param("median", marks=pytest.mark.xfail),
        pytest.param("reflect", marks=pytest.mark.xfail),
        "edge",
        "linear_ramp",
        "maximum",
        "minimum",
        "symmetric",
        "wrap",
    ],
)
@pytest.mark.parametrize(
    "xr_arg, np_arg",
    [
        [{"x": (2, 1)}, ((2, 1), (0, 0), (0, 0))],
        [{"y": (0, 3)}, ((0, 0), (0, 3), (0, 0))],
        [{"x": (3, 1), "z": (2, 0)}, ((3, 1), (0, 0), (2, 0))],
    ],
)
def test_pad(self, mode, xr_arg, np_arg):
    data = np.arange(4 * 3 * 2).reshape(4, 3, 2)
    v = self.cls(["x", "y", "z"], data)

    actual = v.pad(mode=mode, **xr_arg)
    expected = np.pad(data, np_arg, mode=mode,)
  assert_array_equal(actual, expected)

E AssertionError: E Arrays are not equal E
E (mismatch 16.66666666666667%) E x: array([[[ 0, 1], E [ 2, 3], E [ 4, 5],... E y: array([[[ 0, 1], E [ 2, 3], E [ 4, 5],...

xarray/tests/test_variable.py:821: AssertionError _ TestVariableWithDask.testpad[xr_arg2-np_arg2-linear_ramp] __

self = <xarray.tests.test_variable.TestVariableWithDask object at 0x7fb69c609860> mode = 'linear_ramp', xr_arg = {'x': (3, 1), 'z': (2, 0)} np_arg = ((3, 1), (0, 0), (2, 0))

@pytest.mark.parametrize(
    "mode",
    [
        pytest.param("mean", marks=pytest.mark.xfail),
        pytest.param("median", marks=pytest.mark.xfail),
        pytest.param("reflect", marks=pytest.mark.xfail),
        "edge",
        "linear_ramp",
        "maximum",
        "minimum",
        "symmetric",
        "wrap",
    ],
)
@pytest.mark.parametrize(
    "xr_arg, np_arg",
    [
        [{"x": (2, 1)}, ((2, 1), (0, 0), (0, 0))],
        [{"y": (0, 3)}, ((0, 0), (0, 3), (0, 0))],
        [{"x": (3, 1), "z": (2, 0)}, ((3, 1), (0, 0), (2, 0))],
    ],
)
def test_pad(self, mode, xr_arg, np_arg):
    data = np.arange(4 * 3 * 2).reshape(4, 3, 2)
    v = self.cls(["x", "y", "z"], data)

    actual = v.pad(mode=mode, **xr_arg)
    expected = np.pad(data, np_arg, mode=mode,)
  assert_array_equal(actual, expected)

E AssertionError: E Arrays are not equal E
E (mismatch 5.208333333333329%) E x: array([[[ 0, 0, 0, 0], E [ 0, 0, 0, 0], E [ 0, 0, 0, 0]],... E y: array([[[ 0, 0, 0, 0], E [ 0, 0, 0, 0], E [ 0, 0, 0, 0]],... ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Add DataArray.pad, Dataset.pad, Variable.pad 532940062

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 252.412ms · About: xarray-datasette