home / github

Menu
  • GraphQL API
  • Search all tables

issue_comments

Table actions
  • GraphQL API for issue_comments

4 rows where author_association = "NONE" and user = 43635101 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: issue_url, created_at (date), updated_at (date)

issue 3

  • Describe output time index after resampling in docs / docstring 2
  • numpy datetime conversion with DataArray is not working 1
  • Warning on distributed lock on dask cluster 1

user 1

  • jules-ch · 4 ✖

author_association 1

  • NONE · 4 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
1536431418 https://github.com/pydata/xarray/issues/7818#issuecomment-1536431418 https://api.github.com/repos/pydata/xarray/issues/7818 IC_kwDOAMm_X85blBU6 jules-ch 43635101 2023-05-05T15:32:25Z 2023-05-05T15:34:20Z NONE

Might be related to https://github.com/dask/distributed/issues/6402

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Warning on distributed lock on dask cluster 1697705761
1480973335 https://github.com/pydata/xarray/issues/7662#issuecomment-1480973335 https://api.github.com/repos/pydata/xarray/issues/7662 IC_kwDOAMm_X85YRdwX jules-ch 43635101 2023-03-23T10:51:27Z 2023-03-23T10:51:27Z NONE

Values outside of the month are filled with NaN when aggregating after your month filter. It seems to be a side effect of grouping with a frequency.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Describe output time index after resampling in docs / docstring 1636435706
1480964097 https://github.com/pydata/xarray/issues/7662#issuecomment-1480964097 https://api.github.com/repos/pydata/xarray/issues/7662 IC_kwDOAMm_X85YRbgB jules-ch 43635101 2023-03-23T10:44:26Z 2023-03-23T10:46:22Z NONE

Idk if this comes from xarray, pandas seems to have the same behaviour:

```python import xarray as xr import pandas as pd import numpy as np

time = pd.date_range("2000-01-01", "2022-01-01", freq="1h") ds = xr.Dataset({"time": time, "v": ("time",np.random.rand(len(time)))}) ds

df = ds.to_dataframe() df = df[df.index.month.isin([6,7,8])] df.groupby(pd.Grouper(freq="D")).mean()

               v

time
2000-06-01 0.451577 2000-06-02 0.524039 2000-06-03 0.540553 2000-06-04 0.537686 2000-06-05 0.521928 ... ... 2021-08-27 0.441088 2021-08-28 0.473274 2021-08-29 0.455666 2021-08-30 0.559104 2021-08-31 0.424167

[7762 rows x 1 columns] ```

You can select your months after performing aggregation and you will have the correct number of rows

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Describe output time index after resampling in docs / docstring 1636435706
1081859463 https://github.com/pydata/xarray/issues/6412#issuecomment-1081859463 https://api.github.com/repos/pydata/xarray/issues/6412 IC_kwDOAMm_X85Ae92H jules-ch 43635101 2022-03-29T13:16:43Z 2022-03-29T13:18:37Z NONE

I'm using xarray on a Dataset & it's convenient for me to make calculation using DataArray. Here when I want to retrieve the year of datetime, instead of casting back to an array of object & using datetime.year, it's handy to use built-in numpy datetime64 conversion.

It's really confusing astype is not working like numpy does. If you want to keep this behavious maybe add a warning in the docs and log a warning aswell.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  numpy datetime conversion with DataArray is not working 1180565228

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 12.494ms · About: xarray-datasette