issue_comments
4 rows where user = 43635101 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, created_at (date), updated_at (date)
user 1
- jules-ch · 4 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1536431418 | https://github.com/pydata/xarray/issues/7818#issuecomment-1536431418 | https://api.github.com/repos/pydata/xarray/issues/7818 | IC_kwDOAMm_X85blBU6 | jules-ch 43635101 | 2023-05-05T15:32:25Z | 2023-05-05T15:34:20Z | NONE | Might be related to https://github.com/dask/distributed/issues/6402 |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Warning on distributed lock on dask cluster 1697705761 | |
| 1480973335 | https://github.com/pydata/xarray/issues/7662#issuecomment-1480973335 | https://api.github.com/repos/pydata/xarray/issues/7662 | IC_kwDOAMm_X85YRdwX | jules-ch 43635101 | 2023-03-23T10:51:27Z | 2023-03-23T10:51:27Z | NONE | Values outside of the month are filled with NaN when aggregating after your month filter. It seems to be a side effect of grouping with a frequency. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Describe output time index after resampling in docs / docstring 1636435706 | |
| 1480964097 | https://github.com/pydata/xarray/issues/7662#issuecomment-1480964097 | https://api.github.com/repos/pydata/xarray/issues/7662 | IC_kwDOAMm_X85YRbgB | jules-ch 43635101 | 2023-03-23T10:44:26Z | 2023-03-23T10:46:22Z | NONE | Idk if this comes from xarray, pandas seems to have the same behaviour: ```python import xarray as xr import pandas as pd import numpy as np time = pd.date_range("2000-01-01", "2022-01-01", freq="1h") ds = xr.Dataset({"time": time, "v": ("time",np.random.rand(len(time)))}) ds df = ds.to_dataframe() df = df[df.index.month.isin([6,7,8])] df.groupby(pd.Grouper(freq="D")).mean()
time [7762 rows x 1 columns] ``` You can select your months after performing aggregation and you will have the correct number of rows |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Describe output time index after resampling in docs / docstring 1636435706 | |
| 1081859463 | https://github.com/pydata/xarray/issues/6412#issuecomment-1081859463 | https://api.github.com/repos/pydata/xarray/issues/6412 | IC_kwDOAMm_X85Ae92H | jules-ch 43635101 | 2022-03-29T13:16:43Z | 2022-03-29T13:18:37Z | NONE | I'm using xarray on a Dataset & it's convenient for me to make calculation using DataArray. Here when I want to retrieve the year of datetime, instead of casting back to an array of object & using datetime.year, it's handy to use built-in numpy datetime64 conversion. It's really confusing astype is not working like numpy does. If you want to keep this behavious maybe add a warning in the docs and log a warning aswell. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
numpy datetime conversion with DataArray is not working 1180565228 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
issue 3