issues: 1636435706
This data as json
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1636435706 | I_kwDOAMm_X85higb6 | 7662 | Describe output time index after resampling in docs / docstring | 103456955 | open | 0 | 3 | 2023-03-22T20:14:40Z | 2023-03-23T19:27:31Z | NONE | What is your issue?I have monthly files of hourly TCWV for the years 2000-2021. I am loading in all the files as an xarray.Dataset as follows: ``` path = '/ocean/projects/atm200007p/sferrett/data/raw/' files = np.sort(glob.glob(path+'tcwv.nc')) tcwv = xr.open_mfdataset(files,chunks={'time':24,'latitude':121,'longitude':161}) print(tcwv) <xarray.Dataset>
Dimensions: (time: 192864, latitude: 121, longitude: 161)
Coordinates:
* latitude (latitude) float64 30.0 29.75 29.5 29.25 ... 0.75 0.5 0.25 0.0
* longitude (longitude) float64 45.0 45.25 45.5 45.75 ... 84.5 84.75 85.0
* time (time) datetime64[ns] 2000-01-01 ... 2021-12-31T23:00:00
Data variables:
TCWV (time, latitude, longitude) float32 dask.array<chunksize=(24, 121, 161), meta=np.ndarray>
Attributes:
DATA_SOURCE: ECMWF: https://cds.climate.copernicus.eu, Copernicu...
NETCDF_CONVERSION: CISL RDA: Conversion from ECMWF GRIB1 data to netCDF4.
NETCDF_VERSION: 4.6.1
CONVERSION_PLATFORM: Linux casper05 3.10.0-693.21.1.el7.x86_64 #1 SMP We...
CONVERSION_DATE: Fri Jul 26 12:11:15 MDT 2019
Conventions: CF-1.6
NETCDF_COMPRESSION: NCO: Precision-preserving compression to netCDF4/HD...
history: Fri Mar 17 08:19:49 2023: ncks -d latitude,0.0,30.0...
NCO: netCDF Operators version 5.0.3 (Homepage = http://n.../
DatasetGroupBy, grouped over 'month'
3 groups with labels 6, 7, 8.
<xarray.Dataset>
Dimensions: (time: 48576, latitude: 121, longitude: 161)
Coordinates:
* latitude (latitude) float64 30.0 29.75 29.5 29.25 ... 0.75 0.5 0.25 0.0
* longitude (longitude) float64 45.0 45.25 45.5 45.75 ... 84.5 84.75 85.0
* time (time) datetime64[ns] 2000-06-01 ... 2021-08-31T23:00:00
Data variables:
TCWV (time, latitude, longitude) float32 dask.array<chunksize=(24, 121, 161), meta=np.ndarray>
DatasetGroupBy, grouped over 'month' 12 groups with labels 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. <xarray.Dataset> Dimensions: (latitude: 121, longitude: 161, time: 7762) Coordinates: * latitude (latitude) float64 30.0 29.75 29.5 29.25 ... 0.75 0.5 0.25 0.0 * longitude (longitude) float64 45.0 45.25 45.5 45.75 ... 84.5 84.75 85.0 * time (time) datetime64[ns] 2000-06-01 2000-06-02 ... 2021-08-31 Data variables: TCWV (time, latitude, longitude) float32 dask.array<chunksize=(1, 121, 161), meta=np.ndarray> ``` Is there a reason that this is happening/a way to work around this? It seems too bulky to call resample then subset the time dimension, especially if needing to repeat this operation fir large amounts of data. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7662/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
13221727 | issue |