issue_comments
5 rows where author_association = "NONE" and user = 25382032 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, created_at (date), updated_at (date)
user 1
- andreall · 5 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 874205134 | https://github.com/pydata/xarray/issues/5567#issuecomment-874205134 | https://api.github.com/repos/pydata/xarray/issues/5567 | MDEyOklzc3VlQ29tbWVudDg3NDIwNTEzNA== | andreall 25382032 | 2021-07-05T15:48:50Z | 2021-07-05T15:48:50Z | NONE | oh I get it now. Thanks. Indeed it works now when chunking lat and lon from the start. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
quantile to_netcdf loading original data 935818279 | |
| 873123273 | https://github.com/pydata/xarray/issues/5567#issuecomment-873123273 | https://api.github.com/repos/pydata/xarray/issues/5567 | MDEyOklzc3VlQ29tbWVudDg3MzEyMzI3Mw== | andreall 25382032 | 2021-07-02T16:37:03Z | 2021-07-02T16:37:03Z | NONE |
But if I am doing |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
quantile to_netcdf loading original data 935818279 | |
| 661972749 | https://github.com/pydata/xarray/issues/1086#issuecomment-661972749 | https://api.github.com/repos/pydata/xarray/issues/1086 | MDEyOklzc3VlQ29tbWVudDY2MTk3Mjc0OQ== | andreall 25382032 | 2020-07-21T16:41:52Z | 2020-07-21T16:41:52Z | NONE | Hi @darothen , Thanks a lot..I hadn't thought of processing each file and then merging. Will give it a try, Thanks, |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Is there a more efficient way to convert a subset of variables to a dataframe? 187608079 | |
| 661940009 | https://github.com/pydata/xarray/issues/1086#issuecomment-661940009 | https://api.github.com/repos/pydata/xarray/issues/1086 | MDEyOklzc3VlQ29tbWVudDY2MTk0MDAwOQ== | andreall 25382032 | 2020-07-21T15:44:54Z | 2020-07-21T15:46:06Z | NONE | Hi, ``` import xarray as xr from pathlib import Path dir_input = Path('.') data_ww3 = xr.open_mfdataset(dir_input.glob('*/' + 'WW3_EUR-11_CCCma-CanESM2_r1i1p1_CLMcom-CCLM4-8-17_v1_6hr_.nc')) data_ww3 = data_ww3.isel(latitude=74, longitude=18) df_ww3 = data_ww3[['hs', 't02', 't0m1', 't01', 'fp', 'dir', 'spr', 'dp']].to_dataframe() ``` You can download one file here: https://nasgdfa.ugr.es:5001/d/f/566168344466602780 (3.5 GB). I did a profiler when opening 2 .nc files an it said the to_dataframe() call was the one taking most of the time.
I'm just wondering if there's a way to reduce computing time. I need to open 95 files and it takes about 1.5 hour. Thanks, |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Is there a more efficient way to convert a subset of variables to a dataframe? 187608079 | |
| 661775197 | https://github.com/pydata/xarray/issues/1086#issuecomment-661775197 | https://api.github.com/repos/pydata/xarray/issues/1086 | MDEyOklzc3VlQ29tbWVudDY2MTc3NTE5Nw== | andreall 25382032 | 2020-07-21T10:29:48Z | 2020-07-21T10:29:48Z | NONE | I am running into the same problem, this might be a long shot but @naught101 , do you remember if you managed to convert to dataframe in a more efficient way? Thanks, |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Is there a more efficient way to convert a subset of variables to a dataframe? 187608079 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);

issue 2