issue_comments
5 rows where user = 25382032 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, created_at (date), updated_at (date)
user 1
- andreall · 5 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
874205134 | https://github.com/pydata/xarray/issues/5567#issuecomment-874205134 | https://api.github.com/repos/pydata/xarray/issues/5567 | MDEyOklzc3VlQ29tbWVudDg3NDIwNTEzNA== | andreall 25382032 | 2021-07-05T15:48:50Z | 2021-07-05T15:48:50Z | NONE | oh I get it now. Thanks. Indeed it works now when chunking lat and lon from the start. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
quantile to_netcdf loading original data 935818279 | |
873123273 | https://github.com/pydata/xarray/issues/5567#issuecomment-873123273 | https://api.github.com/repos/pydata/xarray/issues/5567 | MDEyOklzc3VlQ29tbWVudDg3MzEyMzI3Mw== | andreall 25382032 | 2021-07-02T16:37:03Z | 2021-07-02T16:37:03Z | NONE |
But if I am doing |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
quantile to_netcdf loading original data 935818279 | |
661972749 | https://github.com/pydata/xarray/issues/1086#issuecomment-661972749 | https://api.github.com/repos/pydata/xarray/issues/1086 | MDEyOklzc3VlQ29tbWVudDY2MTk3Mjc0OQ== | andreall 25382032 | 2020-07-21T16:41:52Z | 2020-07-21T16:41:52Z | NONE | Hi @darothen , Thanks a lot..I hadn't thought of processing each file and then merging. Will give it a try, Thanks, |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Is there a more efficient way to convert a subset of variables to a dataframe? 187608079 | |
661940009 | https://github.com/pydata/xarray/issues/1086#issuecomment-661940009 | https://api.github.com/repos/pydata/xarray/issues/1086 | MDEyOklzc3VlQ29tbWVudDY2MTk0MDAwOQ== | andreall 25382032 | 2020-07-21T15:44:54Z | 2020-07-21T15:46:06Z | NONE | Hi, ``` import xarray as xr from pathlib import Path dir_input = Path('.') data_ww3 = xr.open_mfdataset(dir_input.glob('*/' + 'WW3_EUR-11_CCCma-CanESM2_r1i1p1_CLMcom-CCLM4-8-17_v1_6hr_.nc')) data_ww3 = data_ww3.isel(latitude=74, longitude=18) df_ww3 = data_ww3[['hs', 't02', 't0m1', 't01', 'fp', 'dir', 'spr', 'dp']].to_dataframe() ``` You can download one file here: https://nasgdfa.ugr.es:5001/d/f/566168344466602780 (3.5 GB). I did a profiler when opening 2 .nc files an it said the to_dataframe() call was the one taking most of the time. I'm just wondering if there's a way to reduce computing time. I need to open 95 files and it takes about 1.5 hour. Thanks, |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Is there a more efficient way to convert a subset of variables to a dataframe? 187608079 | |
661775197 | https://github.com/pydata/xarray/issues/1086#issuecomment-661775197 | https://api.github.com/repos/pydata/xarray/issues/1086 | MDEyOklzc3VlQ29tbWVudDY2MTc3NTE5Nw== | andreall 25382032 | 2020-07-21T10:29:48Z | 2020-07-21T10:29:48Z | NONE | I am running into the same problem, this might be a long shot but @naught101 , do you remember if you managed to convert to dataframe in a more efficient way? Thanks, |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Is there a more efficient way to convert a subset of variables to a dataframe? 187608079 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 2