issue_comments: 661940009
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/1086#issuecomment-661940009 | https://api.github.com/repos/pydata/xarray/issues/1086 | 661940009 | MDEyOklzc3VlQ29tbWVudDY2MTk0MDAwOQ== | 25382032 | 2020-07-21T15:44:54Z | 2020-07-21T15:46:06Z | NONE | Hi, ``` import xarray as xr from pathlib import Path dir_input = Path('.') data_ww3 = xr.open_mfdataset(dir_input.glob('*/' + 'WW3_EUR-11_CCCma-CanESM2_r1i1p1_CLMcom-CCLM4-8-17_v1_6hr_.nc')) data_ww3 = data_ww3.isel(latitude=74, longitude=18) df_ww3 = data_ww3[['hs', 't02', 't0m1', 't01', 'fp', 'dir', 'spr', 'dp']].to_dataframe() ``` You can download one file here: https://nasgdfa.ugr.es:5001/d/f/566168344466602780 (3.5 GB). I did a profiler when opening 2 .nc files an it said the to_dataframe() call was the one taking most of the time. I'm just wondering if there's a way to reduce computing time. I need to open 95 files and it takes about 1.5 hour. Thanks, |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
187608079 |