issue_comments
2 rows where author_association = "NONE", issue = 860418546 and user = 1200058 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- N-dimensional boolean indexing · 2 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 844486483 | https://github.com/pydata/xarray/issues/5179#issuecomment-844486483 | https://api.github.com/repos/pydata/xarray/issues/5179 | MDEyOklzc3VlQ29tbWVudDg0NDQ4NjQ4Mw== | Hoeze 1200058 | 2021-05-19T21:27:17Z | 2021-05-19T21:27:17Z | NONE | fyi, I updated the boolean indexing to support additional or missing dimensions: https://gist.github.com/Hoeze/96616ef9d179180b0b7de97c97e00a27 I'm using this on a 4D-array with >300GB to flatten three of the four dimensions and it works, even on 64GB of RAM. |
{
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
N-dimensional boolean indexing 860418546 | |
| 821881984 | https://github.com/pydata/xarray/issues/5179#issuecomment-821881984 | https://api.github.com/repos/pydata/xarray/issues/5179 | MDEyOklzc3VlQ29tbWVudDgyMTg4MTk4NA== | Hoeze 1200058 | 2021-04-17T20:22:13Z | 2021-04-17T20:27:25Z | NONE | @max-sixty The reason is that my method is basically a special case of point-wise indexing: http://xarray.pydata.org/en/stable/indexing.html#more-advanced-indexing You can get the same result by calling: ```python core_dim_locs = {key: value for key, value in core_dim_locs_from_cond(mask, new_dim_name="newdim")} pointwise selectiondata.sel( dim_0=outliers_subset["dim_0"], dim_1=outliers_subset["dim_1"], dim_2=outliers_subset["dim_2"] ) ``` (Note that you loose chunk information by this method, that's why it is less efficient) When you want to select random items from a N-dimensional array, you can either model the result as some sparse array or by stacking the dimensions. (OK, stacking the dimensions means also a sparse COO encoding...) |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
N-dimensional boolean indexing 860418546 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1