issue_comments
2 rows where author_association = "MEMBER" and issue = 1130073503 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Date in matplotlib conversion does not handle "YYYY-MM-DD" format for xarray=0.21.1 · 2 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1049060894 | https://github.com/pydata/xarray/issues/6263#issuecomment-1049060894 | https://api.github.com/repos/pydata/xarray/issues/6263 | IC_kwDOAMm_X84-h2Ye | dcherian 2448579 | 2022-02-23T18:03:52Z | 2022-02-23T18:03:52Z | MEMBER | @jklymak it seems a benefit of the pandas converter is that it converts strings to dates. Can the matplotlib converter do the same? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Date in matplotlib conversion does not handle "YYYY-MM-DD" format for xarray=0.21.1 1130073503 | |
1035102667 | https://github.com/pydata/xarray/issues/6263#issuecomment-1035102667 | https://api.github.com/repos/pydata/xarray/issues/6263 | IC_kwDOAMm_X849smnL | Illviljan 14371165 | 2022-02-10T16:07:53Z | 2022-02-10T16:07:53Z | MEMBER | xarray now relies on matplotlibs converters instead of automatically registering pandas converters, see #6109. A pure matplotlib version doesn't work either so importing xarray shouldn't all of a sudden change that: ```python import numpy as np import matplotlib.pyplot as plt times = np.arange(np.datetime64('2001-01-02'), np.datetime64('2002-02-03'), np.timedelta64(75, 'm')) y = np.random.randn(len(times)) fig, ax = plt.subplots()
ax.plot(times, y)
ax.set_xlim(["2002-01-03","2002-01-20"])
times = np.arange(np.datetime64('2001-01-02'), np.datetime64('2002-02-03'), np.timedelta64(75, 'm')) y = np.random.randn(len(times)) fig, ax = plt.subplots() ax.plot(times, y) ax.set_xlim(np.array(["2002-01-03","2002-01-20"], dtype="datetime64")) ``` Or use pandas converters like xarray did before: ```python import numpy as np import matplotlib.pyplot as plt import pandas as pd pd.plotting.register_matplotlib_converters() times = np.arange(np.datetime64('2001-01-02'), np.datetime64('2002-02-03'), np.timedelta64(75, 'm')) y = np.random.randn(len(times)) fig, ax = plt.subplots() ax.plot(times, y) ax.set_xlim(["2002-01-03","2002-01-20"]) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Date in matplotlib conversion does not handle "YYYY-MM-DD" format for xarray=0.21.1 1130073503 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 2