home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

2 rows where author_association = "MEMBER" and issue = 1130073503 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 2

  • dcherian 1
  • Illviljan 1

issue 1

  • Date in matplotlib conversion does not handle "YYYY-MM-DD" format for xarray=0.21.1 · 2 ✖

author_association 1

  • MEMBER · 2 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
1049060894 https://github.com/pydata/xarray/issues/6263#issuecomment-1049060894 https://api.github.com/repos/pydata/xarray/issues/6263 IC_kwDOAMm_X84-h2Ye dcherian 2448579 2022-02-23T18:03:52Z 2022-02-23T18:03:52Z MEMBER

@jklymak it seems a benefit of the pandas converter is that it converts strings to dates. Can the matplotlib converter do the same?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Date in matplotlib conversion does not handle "YYYY-MM-DD" format for xarray=0.21.1 1130073503
1035102667 https://github.com/pydata/xarray/issues/6263#issuecomment-1035102667 https://api.github.com/repos/pydata/xarray/issues/6263 IC_kwDOAMm_X849smnL Illviljan 14371165 2022-02-10T16:07:53Z 2022-02-10T16:07:53Z MEMBER

xarray now relies on matplotlibs converters instead of automatically registering pandas converters, see #6109.

A pure matplotlib version doesn't work either so importing xarray shouldn't all of a sudden change that: ```python import numpy as np import matplotlib.pyplot as plt

times = np.arange(np.datetime64('2001-01-02'), np.datetime64('2002-02-03'), np.timedelta64(75, 'm')) y = np.random.randn(len(times))

fig, ax = plt.subplots() ax.plot(times, y) ax.set_xlim(["2002-01-03","2002-01-20"]) One way is to use datetime64 in set_xlim, which makes sense to me since `times` is `datetime64` as well:python import numpy as np import matplotlib.pyplot as plt

times = np.arange(np.datetime64('2001-01-02'), np.datetime64('2002-02-03'), np.timedelta64(75, 'm')) y = np.random.randn(len(times))

fig, ax = plt.subplots() ax.plot(times, y) ax.set_xlim(np.array(["2002-01-03","2002-01-20"], dtype="datetime64")) ```

Or use pandas converters like xarray did before: ```python import numpy as np import matplotlib.pyplot as plt import pandas as pd

pd.plotting.register_matplotlib_converters()

times = np.arange(np.datetime64('2001-01-02'), np.datetime64('2002-02-03'), np.timedelta64(75, 'm')) y = np.random.randn(len(times))

fig, ax = plt.subplots() ax.plot(times, y) ax.set_xlim(["2002-01-03","2002-01-20"]) ```

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Date in matplotlib conversion does not handle "YYYY-MM-DD" format for xarray=0.21.1 1130073503

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 18.027ms · About: xarray-datasette