issue_comments: 1035102667
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/6263#issuecomment-1035102667 | https://api.github.com/repos/pydata/xarray/issues/6263 | 1035102667 | IC_kwDOAMm_X849smnL | 14371165 | 2022-02-10T16:07:53Z | 2022-02-10T16:07:53Z | MEMBER | xarray now relies on matplotlibs converters instead of automatically registering pandas converters, see #6109. A pure matplotlib version doesn't work either so importing xarray shouldn't all of a sudden change that: ```python import numpy as np import matplotlib.pyplot as plt times = np.arange(np.datetime64('2001-01-02'), np.datetime64('2002-02-03'), np.timedelta64(75, 'm')) y = np.random.randn(len(times)) fig, ax = plt.subplots()
ax.plot(times, y)
ax.set_xlim(["2002-01-03","2002-01-20"])
times = np.arange(np.datetime64('2001-01-02'), np.datetime64('2002-02-03'), np.timedelta64(75, 'm')) y = np.random.randn(len(times)) fig, ax = plt.subplots() ax.plot(times, y) ax.set_xlim(np.array(["2002-01-03","2002-01-20"], dtype="datetime64")) ``` Or use pandas converters like xarray did before: ```python import numpy as np import matplotlib.pyplot as plt import pandas as pd pd.plotting.register_matplotlib_converters() times = np.arange(np.datetime64('2001-01-02'), np.datetime64('2002-02-03'), np.timedelta64(75, 'm')) y = np.random.randn(len(times)) fig, ax = plt.subplots() ax.plot(times, y) ax.set_xlim(["2002-01-03","2002-01-20"]) ``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
1130073503 |