issue_comments
3 rows where issue = 1130073503 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Date in matplotlib conversion does not handle "YYYY-MM-DD" format for xarray=0.21.1 · 3 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
1049066201 | https://github.com/pydata/xarray/issues/6263#issuecomment-1049066201 | https://api.github.com/repos/pydata/xarray/issues/6263 | IC_kwDOAMm_X84-h3rZ | jklymak 1562854 | 2022-02-23T18:09:32Z | 2022-02-23T18:09:32Z | CONTRIBUTOR | It could, after the units are set to dates, but all it would do is pass to If the units are not set to dates (ie. this is the first call on the axis) then strings are interpreted as categories in Matplotlib, and all sorts of hilarity ensues if the strings are all dates.... |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Date in matplotlib conversion does not handle "YYYY-MM-DD" format for xarray=0.21.1 1130073503 | |
1049060894 | https://github.com/pydata/xarray/issues/6263#issuecomment-1049060894 | https://api.github.com/repos/pydata/xarray/issues/6263 | IC_kwDOAMm_X84-h2Ye | dcherian 2448579 | 2022-02-23T18:03:52Z | 2022-02-23T18:03:52Z | MEMBER | @jklymak it seems a benefit of the pandas converter is that it converts strings to dates. Can the matplotlib converter do the same? |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Date in matplotlib conversion does not handle "YYYY-MM-DD" format for xarray=0.21.1 1130073503 | |
1035102667 | https://github.com/pydata/xarray/issues/6263#issuecomment-1035102667 | https://api.github.com/repos/pydata/xarray/issues/6263 | IC_kwDOAMm_X849smnL | Illviljan 14371165 | 2022-02-10T16:07:53Z | 2022-02-10T16:07:53Z | MEMBER | xarray now relies on matplotlibs converters instead of automatically registering pandas converters, see #6109. A pure matplotlib version doesn't work either so importing xarray shouldn't all of a sudden change that: ```python import numpy as np import matplotlib.pyplot as plt times = np.arange(np.datetime64('2001-01-02'), np.datetime64('2002-02-03'), np.timedelta64(75, 'm')) y = np.random.randn(len(times)) fig, ax = plt.subplots()
ax.plot(times, y)
ax.set_xlim(["2002-01-03","2002-01-20"])
times = np.arange(np.datetime64('2001-01-02'), np.datetime64('2002-02-03'), np.timedelta64(75, 'm')) y = np.random.randn(len(times)) fig, ax = plt.subplots() ax.plot(times, y) ax.set_xlim(np.array(["2002-01-03","2002-01-20"], dtype="datetime64")) ``` Or use pandas converters like xarray did before: ```python import numpy as np import matplotlib.pyplot as plt import pandas as pd pd.plotting.register_matplotlib_converters() times = np.arange(np.datetime64('2001-01-02'), np.datetime64('2002-02-03'), np.timedelta64(75, 'm')) y = np.random.randn(len(times)) fig, ax = plt.subplots() ax.plot(times, y) ax.set_xlim(["2002-01-03","2002-01-20"]) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Date in matplotlib conversion does not handle "YYYY-MM-DD" format for xarray=0.21.1 1130073503 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 3