issue_comments
4 rows where author_association = "CONTRIBUTOR" and user = 630936 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, created_at (date), updated_at (date)
user 1
- rth · 4 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
447835252 | https://github.com/pydata/xarray/issues/2609#issuecomment-447835252 | https://api.github.com/repos/pydata/xarray/issues/2609 | MDEyOklzc3VlQ29tbWVudDQ0NzgzNTI1Mg== | rth 630936 | 2018-12-17T12:51:29Z | 2018-12-17T12:51:29Z | CONTRIBUTOR | Thanks for the confirmation @shoyer ! |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Cannot replace xr.ufuncs.angle with np.angle 391398977 | |
334799819 | https://github.com/pydata/xarray/issues/553#issuecomment-334799819 | https://api.github.com/repos/pydata/xarray/issues/553 | MDEyOklzc3VlQ29tbWVudDMzNDc5OTgxOQ== | rth 630936 | 2017-10-06T16:09:25Z | 2017-10-06T16:09:25Z | CONTRIBUTOR | @shoyer Aww, great. Thanks for pointing this out. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
operation on complex number data 103703011 | |
334799284 | https://github.com/pydata/xarray/issues/553#issuecomment-334799284 | https://api.github.com/repos/pydata/xarray/issues/553 | MDEyOklzc3VlQ29tbWVudDMzNDc5OTI4NA== | rth 630936 | 2017-10-06T16:07:18Z | 2017-10-06T16:08:37Z | CONTRIBUTOR | There is an open issue at numpy about this in https://github.com/numpy/numpy/issues/6266 Also, for future reference, locally re-defining def angle(z, deg=0): """Compute the angle of an xarray
``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
operation on complex number data 103703011 | |
326803603 | https://github.com/pydata/xarray/issues/1375#issuecomment-326803603 | https://api.github.com/repos/pydata/xarray/issues/1375 | MDEyOklzc3VlQ29tbWVudDMyNjgwMzYwMw== | rth 630936 | 2017-09-03T13:01:44Z | 2017-09-03T13:01:44Z | CONTRIBUTOR |
Other examples where labeled sparse arrays would be useful are, * one-hot encoding that are widely used in machine learning. * tokenizing textual data produces large sparse matrices where the column labels correspond to the vocabulary, while row labels correspond to document ids. Here is a minimal example using scikit-learn, ```py import os.path from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Sparse arrays 221858543 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
issue 3