issue_comments
4 rows where author_association = "CONTRIBUTOR" and user = 630936 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: issue_url, created_at (date), updated_at (date)
user 1
- rth · 4 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 447835252 | https://github.com/pydata/xarray/issues/2609#issuecomment-447835252 | https://api.github.com/repos/pydata/xarray/issues/2609 | MDEyOklzc3VlQ29tbWVudDQ0NzgzNTI1Mg== | rth 630936 | 2018-12-17T12:51:29Z | 2018-12-17T12:51:29Z | CONTRIBUTOR | Thanks for the confirmation @shoyer ! |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Cannot replace xr.ufuncs.angle with np.angle 391398977 | |
| 334799819 | https://github.com/pydata/xarray/issues/553#issuecomment-334799819 | https://api.github.com/repos/pydata/xarray/issues/553 | MDEyOklzc3VlQ29tbWVudDMzNDc5OTgxOQ== | rth 630936 | 2017-10-06T16:09:25Z | 2017-10-06T16:09:25Z | CONTRIBUTOR | @shoyer Aww, great. Thanks for pointing this out. |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
operation on complex number data 103703011 | |
| 334799284 | https://github.com/pydata/xarray/issues/553#issuecomment-334799284 | https://api.github.com/repos/pydata/xarray/issues/553 | MDEyOklzc3VlQ29tbWVudDMzNDc5OTI4NA== | rth 630936 | 2017-10-06T16:07:18Z | 2017-10-06T16:08:37Z | CONTRIBUTOR | There is an open issue at numpy about this in https://github.com/numpy/numpy/issues/6266 Also, for future reference, locally re-defining def angle(z, deg=0): """Compute the angle of an xarray
``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
operation on complex number data 103703011 | |
| 326803603 | https://github.com/pydata/xarray/issues/1375#issuecomment-326803603 | https://api.github.com/repos/pydata/xarray/issues/1375 | MDEyOklzc3VlQ29tbWVudDMyNjgwMzYwMw== | rth 630936 | 2017-09-03T13:01:44Z | 2017-09-03T13:01:44Z | CONTRIBUTOR |
Other examples where labeled sparse arrays would be useful are, * one-hot encoding that are widely used in machine learning. * tokenizing textual data produces large sparse matrices where the column labels correspond to the vocabulary, while row labels correspond to document ids. Here is a minimal example using scikit-learn, ```py import os.path from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
Sparse arrays 221858543 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
issue 3