issue_comments: 326803603
This data as json
html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
https://github.com/pydata/xarray/issues/1375#issuecomment-326803603 | https://api.github.com/repos/pydata/xarray/issues/1375 | 326803603 | MDEyOklzc3VlQ29tbWVudDMyNjgwMzYwMw== | 630936 | 2017-09-03T13:01:44Z | 2017-09-03T13:01:44Z | CONTRIBUTOR |
Other examples where labeled sparse arrays would be useful are, * one-hot encoding that are widely used in machine learning. * tokenizing textual data produces large sparse matrices where the column labels correspond to the vocabulary, while row labels correspond to document ids. Here is a minimal example using scikit-learn, ```py import os.path from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer
|
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
221858543 |