issue_comments: 326803603
This data as json
| html_url | issue_url | id | node_id | user | created_at | updated_at | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| https://github.com/pydata/xarray/issues/1375#issuecomment-326803603 | https://api.github.com/repos/pydata/xarray/issues/1375 | 326803603 | MDEyOklzc3VlQ29tbWVudDMyNjgwMzYwMw== | 630936 | 2017-09-03T13:01:44Z | 2017-09-03T13:01:44Z | CONTRIBUTOR |
Other examples where labeled sparse arrays would be useful are, * one-hot encoding that are widely used in machine learning. * tokenizing textual data produces large sparse matrices where the column labels correspond to the vocabulary, while row labels correspond to document ids. Here is a minimal example using scikit-learn, ```py import os.path from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
221858543 |