home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

4 rows where author_association = "CONTRIBUTOR" and issue = 492866552 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 2

  • stefraynaud 2
  • dnowacki-usgs 2

issue 1

  • interpolate_na: Add max_gap support. · 4 ✖

author_association 1

  • CONTRIBUTOR · 4 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
549595749 https://github.com/pydata/xarray/pull/3302#issuecomment-549595749 https://api.github.com/repos/pydata/xarray/issues/3302 MDEyOklzc3VlQ29tbWVudDU0OTU5NTc0OQ== dnowacki-usgs 13837821 2019-11-04T23:34:12Z 2019-11-04T23:34:12Z CONTRIBUTOR

Thanks for all your work @dcherian! Did a quick test with some real-world timeseries data I've been wanting to use with max_gap and it looks good to me. I will definitely be using this in the future! 👍

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  interpolate_na: Add max_gap support. 492866552
543393942 https://github.com/pydata/xarray/pull/3302#issuecomment-543393942 https://api.github.com/repos/pydata/xarray/issues/3302 MDEyOklzc3VlQ29tbWVudDU0MzM5Mzk0Mg== dnowacki-usgs 13837821 2019-10-17T22:48:45Z 2019-10-17T22:51:36Z CONTRIBUTOR

Thanks so much for taking this on. Not sure how I missed the notification that you had done so.

@dcherian I checked out your branch and did some testing and found that testing this against dim="x" fails with a ValueError. ```python arr = np.array([ [np.nan, np.nan, np.nan, 1, 2, 3, 4, np.nan, 6, 7, np.nan, np.nan, np.nan, 11, np.nan, np.nan, ], [np.nan, np.nan, np.nan, 1, 2, 3, np.nan, np.nan, 6, 7, np.nan, np.nan, np.nan, 11, np.nan, np.nan, ], [np.nan, np.nan, np.nan, 1, 2, 3, np.nan, np.nan, 6, 7, np.nan, np.nan, np.nan, 11, np.nan, np.nan, ], [np.nan, np.nan, np.nan, 1, 2, 3, 4, np.nan, 6, 7, np.nan, np.nan, np.nan, 11, np.nan, np.nan, ], ])

da = xr.DataArray(arr, dims=["x", "y"], coords={"x": np.arange(arr.shape[0]), "y": np.arange(arr.shape[1])})

actual = da.interpolate_na("y", max_gap=2) # this works as in your test example actual = da.interpolate_na("x", max_gap=2) # this fails Error:

actual = da.interpolate_na("x", max_gap=2) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/Users/dnowacki/Documents/xarray/xarray/core/dataarray.py", line 2026, in interpolate_na **kwargs File "/Users/dnowacki/Documents/xarray/xarray/core/missing.py", line 302, in interp_na nan_block_lengths = _get_nan_block_lengths(self, dim, index) File "/Users/dnowacki/Documents/xarray/xarray/core/missing.py", line 23, in _get_nan_block_lengths arange = ones_like(obj) * index + (index[1] - index[0]) File "/Users/dnowacki/Documents/xarray/xarray/core/dataarray.py", line 2500, in func if not reflexive File "/Users/dnowacki/Documents/xarray/xarray/core/variable.py", line 1884, in func if not reflexive ValueError: operands could not be broadcast together with shapes (4,16) (4,) ```

I fixed it by changing this line https://github.com/dcherian/xarray/blob/8899f05a13533e10c8972836afda089b5b792ca0/xarray/core/missing.py#L23 to this: python if index.shape[0] == obj.shape[0]: arange = ones_like(obj) * index[:, None] + (index[1] - index[0]) else: arange = ones_like(obj) * index + (index[1] - index[0]) Does this seem reasonable?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  interpolate_na: Add max_gap support. 492866552
531674432 https://github.com/pydata/xarray/pull/3302#issuecomment-531674432 https://api.github.com/repos/pydata/xarray/issues/3302 MDEyOklzc3VlQ29tbWVudDUzMTY3NDQzMg== stefraynaud 1941408 2019-09-16T07:50:26Z 2019-09-16T07:50:26Z CONTRIBUTOR

Thanks @stefraynaud . I'm having trouble figuring out defining the length of a gap in the irregular coordinate case.

e.g.

da4 = xr.DataArray([np.nan, np.nan, np.nan, 1, np.nan, np.nan, 4, np.nan, np.nan], dims=["y"], coords={"y": [0, 2, 5, 6, 7, 8, 10, 12, 14]})

<xarray.DataArray (y: 9)> array([nan, nan, nan, 1., nan, nan, 4., nan, nan]) Coordinates: * y (y) int64 0 2 5 6 7 8 10 12 14

What is the length of these three gaps given that xarray doesn't have any understanding of grids?

@dcherian In your example, as said @max-sixty, the middle gap has a length of 10-6=4. The length gaps at the edges cannot be computed but it doesn't matter, and the algo should work as when simply counting the nans.

I'll have a look the code, maybe for a new PR after this one.

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  interpolate_na: Add max_gap support. 492866552
531248632 https://github.com/pydata/xarray/pull/3302#issuecomment-531248632 https://api.github.com/repos/pydata/xarray/issues/3302 MDEyOklzc3VlQ29tbWVudDUzMTI0ODYzMg== stefraynaud 1941408 2019-09-13T14:00:30Z 2019-09-13T14:00:30Z CONTRIBUTOR

Nice feature. How about adding the support max gaps expressed in physical units, since coordinates may be irregular?

{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  interpolate_na: Add max_gap support. 492866552

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 15.969ms · About: xarray-datasette