issue_comments
1 row where author_association = "CONTRIBUTOR" and issue = 403462155 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- ENH: resample methods with tolerance · 1 ✖
| id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 457963623 | https://github.com/pydata/xarray/pull/2716#issuecomment-457963623 | https://api.github.com/repos/pydata/xarray/issues/2716 | MDEyOklzc3VlQ29tbWVudDQ1Nzk2MzYyMw== | observingClouds 43613877 | 2019-01-27T23:16:58Z | 2019-01-27T23:24:46Z | CONTRIBUTOR | Sure @jhamman, I'll add some tests. However, I thought the test should rather go into test_dataarray.py than test_missing.py, because this is an improvement to resample/_upsample? Something like ```python def test_upsample_tolerance(self): # Test tolerance keyword for upsample methods bfill, pad, nearest times = pd.date_range('2000-01-01', freq='1D', periods=2) times_upsampled = pd.date_range('2000-01-01', freq='6H', periods=5) array = DataArray(np.arange(2), [('time', times)])
``` |
{
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
ENH: resample methods with tolerance 403462155 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] (
[html_url] TEXT,
[issue_url] TEXT,
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[created_at] TEXT,
[updated_at] TEXT,
[author_association] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
ON [issue_comments] ([user]);
user 1