issue_comments
10 rows where author_association = "CONTRIBUTOR" and issue = 374025325 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: reactions, created_at (date), updated_at (date)
issue 1
- Array indexing with dask arrays · 10 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
944328081 | https://github.com/pydata/xarray/issues/2511#issuecomment-944328081 | https://api.github.com/repos/pydata/xarray/issues/2511 | IC_kwDOAMm_X844SU2R | bzah 16700639 | 2021-10-15T14:03:21Z | 2021-10-15T14:03:21Z | CONTRIBUTOR | I'll drop a PR, it might be easier to try and play with this than a piece of code lost in an issue. |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
931430066 | https://github.com/pydata/xarray/issues/2511#issuecomment-931430066 | https://api.github.com/repos/pydata/xarray/issues/2511 | IC_kwDOAMm_X843hH6y | bzah 16700639 | 2021-09-30T15:30:02Z | 2021-10-06T09:48:19Z | CONTRIBUTOR | Okay I could re do my test.
If I manually call I'm sorry I cannot share as is my code, the relevant portion is really in the middle of many things. I'll try to get a minimalist version of it to share with you. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
930153816 | https://github.com/pydata/xarray/issues/2511#issuecomment-930153816 | https://api.github.com/repos/pydata/xarray/issues/2511 | IC_kwDOAMm_X843cQVY | bzah 16700639 | 2021-09-29T13:02:15Z | 2021-10-06T09:46:10Z | CONTRIBUTOR | @pl-marasco Ok that's strange. I should have saved my use case :/ I will try to reproduce it and will provide a gist of it soon. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
932229595 | https://github.com/pydata/xarray/issues/2511#issuecomment-932229595 | https://api.github.com/repos/pydata/xarray/issues/2511 | IC_kwDOAMm_X843kLHb | bzah 16700639 | 2021-10-01T13:29:32Z | 2021-10-01T13:29:32Z | CONTRIBUTOR | @pl-marasco Thanks for the example ! With it I have the same result as you, it takes the same time with patch or with compute. However, I could construct an example giving very different results. It is quite close to my original code: ``` time_start = time.perf_counter() COORDS = dict( time=pd.date_range("2042-01-01", periods=200, freq=pd.DateOffset(days=1)), ) da = xr.DataArray( np.random.rand(200 * 3500 * 350).reshape((200, 3500, 350)), dims=('time', 'x', 'y'), coords=COORDS ).chunk(dict(time=-1, x=100, y=100))
``` (Basically I want for each month the first event occurring in it). Without the patch and uncommenting |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
922942743 | https://github.com/pydata/xarray/issues/2511#issuecomment-922942743 | https://api.github.com/repos/pydata/xarray/issues/2511 | IC_kwDOAMm_X843Av0X | bzah 16700639 | 2021-09-20T13:45:56Z | 2021-09-20T13:45:56Z | CONTRIBUTOR | I wrote a very naive fix, it works but seems to perform really slowly, I would appreciate some feedback (I'm a beginner with Dask).
Basically, I added The patch: ``` class VectorizedIndexer(ExplicitIndexer): """Tuple for vectorized indexing.
``` |
{ "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 2, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
563330352 | https://github.com/pydata/xarray/issues/2511#issuecomment-563330352 | https://api.github.com/repos/pydata/xarray/issues/2511 | MDEyOklzc3VlQ29tbWVudDU2MzMzMDM1Mg== | rafa-guedes 7799184 | 2019-12-09T16:53:38Z | 2019-12-09T16:53:38Z | CONTRIBUTOR | I'm having similar issue, here is an example: ``` import numpy as np import dask.array as da import xarray as xr darr = xr.DataArray(data=[0.2, 0.4, 0.6], coords={"z": range(3)}, dims=("z",)) good_indexer = xr.DataArray( data=np.random.randint(0, 3, 8).reshape(4, 2).astype(int), coords={"y": range(4), "x": range(2)}, dims=("y", "x") ) bad_indexer = xr.DataArray( data=da.random.randint(0, 3, 8).reshape(4, 2).astype(int), coords={"y": range(4), "x": range(2)}, dims=("y", "x") ) In [5]: darr In [6]: good_indexer In [7]: bad_indexer In [8]: darr[good_indexer] In [9]: darr[bad_indexer]TypeError Traceback (most recent call last) <ipython-input-8-2a57c1a2eade> in <module> ----> 1 darr[bad_indexer] ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/dataarray.py in getitem(self, key) 638 else: 639 # xarray-style array indexing --> 640 return self.isel(indexers=self._item_key_to_dict(key)) 641 642 def setitem(self, key: Any, value: Any) -> None: ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/dataarray.py in isel(self, indexers, drop, **indexers_kwargs) 1012 """ 1013 indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "isel") -> 1014 ds = self._to_temp_dataset().isel(drop=drop, indexers=indexers) 1015 return self._from_temp_dataset(ds) 1016 ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/dataset.py in isel(self, indexers, drop, **indexers_kwargs) 1920 if name in self.indexes: 1921 new_var, new_index = isel_variable_and_index( -> 1922 name, var, self.indexes[name], var_indexers 1923 ) 1924 if new_index is not None: ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/indexes.py in isel_variable_and_index(name, variable, index, indexers) 79 ) 80 ---> 81 new_variable = variable.isel(indexers) 82 83 if new_variable.dims != (name,): ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/variable.py in isel(self, indexers, **indexers_kwargs) 1052 1053 key = tuple(indexers.get(dim, slice(None)) for dim in self.dims) -> 1054 return self[key] 1055 1056 def squeeze(self, dim=None): ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/variable.py in getitem(self, key)
700 array ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/variable.py in _broadcast_indexes(self, key) 557 if isinstance(k, Variable): 558 if len(k.dims) > 1: --> 559 return self._broadcast_indexes_vectorized(key) 560 dims.append(k.dims[0]) 561 elif not isinstance(k, integer_types): ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/variable.py in _broadcast_indexes_vectorized(self, key) 685 new_order = None 686 --> 687 return out_dims, VectorizedIndexer(tuple(out_key)), new_order 688 689 def getitem(self: VariableType, key) -> VariableType: ~/.virtualenvs/py3/local/lib/python3.7/site-packages/xarray/core/indexing.py in init(self, key) 447 else: 448 raise TypeError( --> 449 f"unexpected indexer type for {type(self).name}: {k!r}" 450 ) 451 new_key.append(k) TypeError: unexpected indexer type for VectorizedIndexer: dask.array<reshape, shape=(4, 2), dtype=int64, chunksize=(4, 2), chunktype=numpy.ndarray> In [10]: xr.version In [11]: import dask; dask.version |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
525634152 | https://github.com/pydata/xarray/issues/2511#issuecomment-525634152 | https://api.github.com/repos/pydata/xarray/issues/2511 | MDEyOklzc3VlQ29tbWVudDUyNTYzNDE1Mg== | ulijh 13190237 | 2019-08-28T08:12:13Z | 2019-08-28T08:12:13Z | CONTRIBUTOR | I think the problem is somewhere here: I don't think |
{ "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
522986699 | https://github.com/pydata/xarray/issues/2511#issuecomment-522986699 | https://api.github.com/repos/pydata/xarray/issues/2511 | MDEyOklzc3VlQ29tbWVudDUyMjk4NjY5OQ== | ulijh 13190237 | 2019-08-20T12:15:18Z | 2019-08-20T18:52:49Z | CONTRIBUTOR | Even though the example from above does work, sadly, the following does not:
TypeError Traceback (most recent call last) <ipython-input-4-3542cdd6d61c> in <module> ----> 1 da[dict(dim_2=idcs)] ~/src/xarray/xarray/core/dataarray.py in getitem(self, key) 604 else: 605 # xarray-style array indexing --> 606 return self.isel(indexers=self._item_key_to_dict(key)) 607 608 def setitem(self, key: Any, value: Any) -> None: ~/src/xarray/xarray/core/dataarray.py in isel(self, indexers, drop, **indexers_kwargs) 986 """ 987 indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "isel") --> 988 ds = self._to_temp_dataset().isel(drop=drop, indexers=indexers) 989 return self._from_temp_dataset(ds) 990 ~/src/xarray/xarray/core/dataset.py in isel(self, indexers, drop, **indexers_kwargs) 1901 indexes[name] = new_index 1902 else: -> 1903 new_var = var.isel(indexers=var_indexers) 1904 1905 variables[name] = new_var ~/src/xarray/xarray/core/variable.py in isel(self, indexers, drop, **indexers_kwargs) 984 if dim in indexers: 985 key[i] = indexers[dim] --> 986 return self[tuple(key)] 987 988 def squeeze(self, dim=None): ~/src/xarray/xarray/core/variable.py in getitem(self, key)
675 array ~/src/xarray/xarray/core/variable.py in _broadcast_indexes(self, key) 532 if isinstance(k, Variable): 533 if len(k.dims) > 1: --> 534 return self._broadcast_indexes_vectorized(key) 535 dims.append(k.dims[0]) 536 elif not isinstance(k, integer_types): ~/src/xarray/xarray/core/variable.py in _broadcast_indexes_vectorized(self, key) 660 new_order = None 661 --> 662 return out_dims, VectorizedIndexer(tuple(out_key)), new_order 663 664 def getitem(self, key): ~/src/xarray/xarray/core/indexing.py in init(self, key) 460 raise TypeError( 461 "unexpected indexer type for {}: {!r}".format( --> 462 type(self).name, k 463 ) 464 ) TypeError: unexpected indexer type for VectorizedIndexer: dask.array<arg_agg-aggregate, shape=(3, 4), dtype=int64, chunksize=(1, 4)> ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
498178025 | https://github.com/pydata/xarray/issues/2511#issuecomment-498178025 | https://api.github.com/repos/pydata/xarray/issues/2511 | MDEyOklzc3VlQ29tbWVudDQ5ODE3ODAyNQ== | ulijh 13190237 | 2019-06-03T09:13:49Z | 2019-06-03T09:13:49Z | CONTRIBUTOR | As of version 0.12 indexing with dask arrays works out of the box... I think this can be closed now. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 | |
433304954 | https://github.com/pydata/xarray/issues/2511#issuecomment-433304954 | https://api.github.com/repos/pydata/xarray/issues/2511 | MDEyOklzc3VlQ29tbWVudDQzMzMwNDk1NA== | ulijh 13190237 | 2018-10-26T06:48:54Z | 2018-10-26T06:48:54Z | CONTRIBUTOR | It seem's working fine with the following change but it has a lot of dublicated code... ``` diff --git a/xarray/core/indexing.py b/xarray/core/indexing.py index d51da471..9fe93581 100644 --- a/xarray/core/indexing.py +++ b/xarray/core/indexing.py @@ -7,6 +7,7 @@ from datetime import timedelta import numpy as np import pandas as pd +import dask.array as da from . import duck_array_ops, nputils, utils from .pycompat import ( @@ -420,6 +421,19 @@ class VectorizedIndexer(ExplicitIndexer): 'have different numbers of dimensions: {}' .format(ndims)) k = np.asarray(k, dtype=np.int64) + elif isinstance(k, dask_array_type): + if not np.issubdtype(k.dtype, np.integer): + raise TypeError('invalid indexer array, does not have ' + 'integer dtype: {!r}'.format(k)) + if ndim is None: + ndim = k.ndim + elif ndim != k.ndim: + ndims = [k.ndim for k in key + if isinstance(k, (np.ndarray) + dask_array_type)] + raise ValueError('invalid indexer key: ndarray arguments ' + 'have different numbers of dimensions: {}' + .format(ndims)) + k = da.array(k, dtype=np.int64) else: raise TypeError('unexpected indexer type for {}: {!r}' .format(type(self).name, k)) ``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Array indexing with dask arrays 374025325 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 3