issues: 374025325
This data as json
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
374025325 | MDU6SXNzdWUzNzQwMjUzMjU= | 2511 | Array indexing with dask arrays | 13190237 | closed | 0 | 20 | 2018-10-25T16:13:11Z | 2023-03-15T02:48:00Z | 2023-03-15T02:48:00Z | CONTRIBUTOR | Code example```python da = xr.DataArray(np.ones((10, 10))).chunk(2) indc = xr.DataArray(np.random.randint(0, 9, 10)).chunk(2) This fails:da[{'dim_1' : indc}].values ``` Problem descriptionIndexing with chunked arrays fails, whereas it's fine with "normal" arrays. In case the indices are the result of a lazy calculation, I would like to continue lazily. Expected OutputI would expect an output just like in the "un-chunked" case: ``` da[{'dim_1' : indc.compute()}].values Returns: array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])``` Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2511/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | 13221727 | issue |