home / github

Menu
  • Search all tables
  • GraphQL API

issue_comments

Table actions
  • GraphQL API for issue_comments

1 row where author_association = "CONTRIBUTOR" and issue = 221858543 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: created_at (date), updated_at (date)

user 1

  • rth 1

issue 1

  • Sparse arrays · 1 ✖

author_association 1

  • CONTRIBUTOR · 1 ✖
id html_url issue_url node_id user created_at updated_at ▲ author_association body reactions performed_via_github_app issue
326803603 https://github.com/pydata/xarray/issues/1375#issuecomment-326803603 https://api.github.com/repos/pydata/xarray/issues/1375 MDEyOklzc3VlQ29tbWVudDMyNjgwMzYwMw== rth 630936 2017-09-03T13:01:44Z 2017-09-03T13:01:44Z CONTRIBUTOR

do you have an application that we could use to drive this?

Other examples where labeled sparse arrays would be useful are, * one-hot encoding that are widely used in machine learning. * tokenizing textual data produces large sparse matrices where the column labels correspond to the vocabulary, while row labels correspond to document ids. Here is a minimal example using scikit-learn, ```py import os.path from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer

 ds = fetch_20newsgroups()
 vect = CountVectorizer()
 X = vect.fit_transform(ds.data)
 print(X)  # Extracted tokens
 # Returns:
 # <11314x130107 sparse matrix of type '<class 'numpy.int64'>'
 #  with 1787565 stored elements in Compressed Sparse Row format>

 column_labels = vect.get_feature_names()
 print(np.asarray(column_labels))
 # Returns:
 # array(['00', '000', '0000', ..., 'íålittin', 'ñaustin', 'ýé'],   dtype='<U180')

 row_labels = [int(os.path.split(el)[1]) for el in ds.filenames]
 print(np.asarray(row_labels))
 # Returns:
 # array([102994,  51861,  51879, ...,  60695,  38319, 104440])
 ```
{
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  Sparse arrays 221858543

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issue_comments] (
   [html_url] TEXT,
   [issue_url] TEXT,
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [updated_at] TEXT,
   [author_association] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [issue] INTEGER REFERENCES [issues]([id])
);
CREATE INDEX [idx_issue_comments_issue]
    ON [issue_comments] ([issue]);
CREATE INDEX [idx_issue_comments_user]
    ON [issue_comments] ([user]);
Powered by Datasette · Queries took 12.569ms · About: xarray-datasette