issue_comments
5 rows where author_association = "CONTRIBUTOR" and issue = 198742089 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
issue 1
- Implementing dask.array.coarsen in xarrays · 5 ✖
id | html_url | issue_url | node_id | user | created_at | updated_at ▲ | author_association | body | reactions | performed_via_github_app | issue |
---|---|---|---|---|---|---|---|---|---|---|---|
433510805 | https://github.com/pydata/xarray/issues/1192#issuecomment-433510805 | https://api.github.com/repos/pydata/xarray/issues/1192 | MDEyOklzc3VlQ29tbWVudDQzMzUxMDgwNQ== | jbusecke 14314623 | 2018-10-26T18:59:07Z | 2018-10-26T18:59:07Z | CONTRIBUTOR | I should add that I would be happy to work on an implementation, but probably need a good amount of pointers. Here is the implementation that I have been using (only works with dask.arrays at this point). Should have posted that earlier to avoid @rabernat s zingers over here. ```python def aggregate(da, blocks, func=np.nanmean, debug=False): """ Performs efficient block averaging in one or multiple dimensions. Only works on regular grid dimensions. Parameters ---------- da : xarray DataArray (must be a dask array!) blocks : list List of tuples containing the dimension and interval to aggregate over func : function Aggregation function.Defaults to numpy.nanmean Returns ------- da_agg : xarray Data Aggregated array Examples -------- >>> from xarrayutils import aggregate >>> import numpy as np >>> import xarray as xr >>> import matplotlib.pyplot as plt >>> %matplotlib inline >>> import dask.array as da >>> x = np.arange(-10,10) >>> y = np.arange(-10,10) >>> xx,yy = np.meshgrid(x,y) >>> z = xx2-yy2 >>> a = xr.DataArray(da.from_array(z, chunks=(20, 20)), coords={'x':x,'y':y}, dims=['y','x']) >>> print a <xarray.DataArray 'array-7e422c91624f207a5f7ebac426c01769' (y: 20, x: 20)> dask.array<array-7..., shape=(20, 20), dtype=int64, chunksize=(20, 20)> Coordinates: * y (y) int64 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 * x (x) int64 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 >>> blocks = [('x',2),('y',5)] >>> a_coarse = aggregate(a,blocks,func=np.mean) >>> print a_coarse <xarray.DataArray 'array-7e422c91624f207a5f7ebac426c01769' (y: 2, x: 10)> dask.array<coarsen..., shape=(2, 10), dtype=float64, chunksize=(2, 10)> Coordinates: * y (y) int64 -10 0 * x (x) int64 -10 -8 -6 -4 -2 0 2 4 6 8 Attributes: Coarsened with: <function mean at 0x111754230> Coarsenblocks: [('x', 2), ('y', 10)] """ # Check if the input is a dask array (I might want to convert this # automaticlaly in the future) if not isinstance(da.data, Array): raise RuntimeError('data array data must be a dask array') # Check data type of blocks # TODO write test if (not all(isinstance(n[0], str) for n in blocks) or not all(isinstance(n[1], int) for n in blocks)):
``` |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Implementing dask.array.coarsen in xarrays 198742089 | |
433160023 | https://github.com/pydata/xarray/issues/1192#issuecomment-433160023 | https://api.github.com/repos/pydata/xarray/issues/1192 | MDEyOklzc3VlQ29tbWVudDQzMzE2MDAyMw== | jbusecke 14314623 | 2018-10-25T18:35:57Z | 2018-10-25T18:35:57Z | CONTRIBUTOR | Is this feature still being considered? A big +1 from me. I wrote my own function to achieve this (using dask.array.coarsen), but I was planning to implement a similar functionality in xgcm, and it would be ideal if we could use an upstream implementation from xarray. |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Implementing dask.array.coarsen in xarrays 198742089 | |
305176003 | https://github.com/pydata/xarray/issues/1192#issuecomment-305176003 | https://api.github.com/repos/pydata/xarray/issues/1192 | MDEyOklzc3VlQ29tbWVudDMwNTE3NjAwMw== | laliberte 3217406 | 2017-05-31T12:45:18Z | 2017-05-31T12:45:18Z | CONTRIBUTOR | The reason I ask is that, ideally, |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Implementing dask.array.coarsen in xarrays 198742089 | |
305169201 | https://github.com/pydata/xarray/issues/1192#issuecomment-305169201 | https://api.github.com/repos/pydata/xarray/issues/1192 | MDEyOklzc3VlQ29tbWVudDMwNTE2OTIwMQ== | laliberte 3217406 | 2017-05-31T12:00:11Z | 2017-05-31T12:00:11Z | CONTRIBUTOR | If it's part of |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Implementing dask.array.coarsen in xarrays 198742089 | |
270439515 | https://github.com/pydata/xarray/issues/1192#issuecomment-270439515 | https://api.github.com/repos/pydata/xarray/issues/1192 | MDEyOklzc3VlQ29tbWVudDI3MDQzOTUxNQ== | laliberte 3217406 | 2017-01-04T17:59:08Z | 2017-01-04T17:59:08Z | CONTRIBUTOR | The Does that fit with the |
{ "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
Implementing dask.array.coarsen in xarrays 198742089 |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issue_comments] ( [html_url] TEXT, [issue_url] TEXT, [id] INTEGER PRIMARY KEY, [node_id] TEXT, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [updated_at] TEXT, [author_association] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [issue] INTEGER REFERENCES [issues]([id]) ); CREATE INDEX [idx_issue_comments_issue] ON [issue_comments] ([issue]); CREATE INDEX [idx_issue_comments_user] ON [issue_comments] ([user]);
user 2