issues
6 rows where user = 57914115 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1947869312 | PR_kwDOAMm_X85dCo6P | 8324 | Implement cftime vectorization as discussed in PR #8322 | antscloud 57914115 | open | 0 | 0 | 2023-10-17T17:01:25Z | 2023-10-23T05:11:11Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/8324 | As discussed in #8322, here is the test for implementing the vectorization Only this test seems to fail in I don't really understand why though if you have an idea |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8324/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 2, "eyes": 0 } |
xarray 13221727 | pull | ||||||
1941775048 | I_kwDOAMm_X85zvSLI | 8302 | Rust-based cftime Implementation for Python | antscloud 57914115 | open | 0 | 2 | 2023-10-13T11:33:20Z | 2023-10-22T16:35:50Z | CONTRIBUTOR | Is your feature request related to a problem?I developped a rust based project with python bindings code to parse the CF time conventions and deal with datetime operations. You can find the project on GitHub at https://github.com/antscloud/cftime-rs. It was something missing in the rust ecosystem to deal with NetCDF files, As the project in Rust hits its first working version, I wanted to explore the There are surely missing features compared to Please, let me know if xarray team could be interested. If you are, I can open a pull request to see it is possible, where it breaks the unit tests and if it's worth it Describe the solution you'd likeNo response Describe alternatives you've consideredNo response Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8302/reactions", "total_count": 2, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1947508727 | PR_kwDOAMm_X85dBaso | 8322 | Implementation of rust based cftime | antscloud 57914115 | open | 0 | 1 | 2023-10-17T14:00:45Z | 2023-10-17T22:20:31Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/8322 | As discussed in #8302, here is a first attempt to implement There are a lot of tests and I struggle to understand all the processing in Also there are some key differences betwwen Finally, and regardless of this PR, I guess there could be a speed improvement by vectorizing operations by replacing this : https://github.com/pydata/xarray/blob/df0ddaf2e68a6b033b4e39990d7006dc346fcc8c/xarray/coding/times.py#L622-L649 by something like this : We can use numpy instead of list comprehensions. It takes a bit more of memory though. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8322/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 1, "eyes": 0 } |
xarray 13221727 | pull | ||||||
1303371718 | I_kwDOAMm_X85Nr9_G | 6781 | Cannot open dataset with empty list units | antscloud 57914115 | closed | 0 | 6 | 2022-07-13T12:33:11Z | 2022-10-03T20:32:06Z | 2022-10-03T20:32:05Z | CONTRIBUTOR | What happened?I found myself using a netcdf with empty units and by using xarray i was unable to use open_dataset due to the parsing of cf conventions. I reproduce the bug, and it happens in a particular situation when the units is an empty list (See Minimal Complete Verifiable Example) What did you expect to happen?To parse the units attribute as an empty string ? Minimal Complete Verifiable Example```Python temp = 15 + 8 * np.random.randn(2, 2, 3) precip = 10 * np.random.rand(2, 2, 3) lon = [[-99.83, -99.32], [-99.79, -99.23]] lat = [[42.25, 42.21], [42.63, 42.59]] for real use cases, its good practice to supply array attributes such asunits, but we won't bother here for the sake of brevityds = xr.Dataset( { "temperature": (["x", "y", "time"], temp), "precipitation": (["x", "y", "time"], precip), }, coords={ "lon": (["x", "y"], lon), "lat": (["x", "y"], lat), "time": pd.date_range("2014-09-06", periods=3), "reference_time": pd.Timestamp("2014-09-05"), }, ) ds.temperature.attrs["units"] = [] ds.to_netcdf("test.nc") ds = xr.open_dataset("test.nc") ds.close() ``` MVCE confirmation
Relevant log output```PythonTypeError Traceback (most recent call last) Input In [3], in <cell line: 1>() ----> 1 ds = xr.open_dataset("test.nc") 2 print(ds["temperature"].attrs) 3 ds.close() File ~/.local/src/miniconda/envs/uptodatexarray/lib/python3.10/site-packages/xarray/backends/api.py:495, in open_dataset(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, backend_kwargs, args, kwargs) 483 decoders = _resolve_decoders_kwargs( 484 decode_cf, 485 open_backend_dataset_parameters=backend.open_dataset_parameters, (...) 491 decode_coords=decode_coords, 492 ) 494 overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None) --> 495 backend_ds = backend.open_dataset( 496 filename_or_obj, 497 drop_variables=drop_variables, 498 decoders, 499 kwargs, 500 ) 501 ds = _dataset_from_backend_dataset( 502 backend_ds, 503 filename_or_obj, (...) 510 *kwargs, 511 ) 512 return ds File ~/.local/src/miniconda/envs/uptodatexarray/lib/python3.10/site-packages/xarray/backends/netCDF4_.py:564, in NetCDF4BackendEntrypoint.open_dataset(self, filename_or_obj, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta, group, mode, format, clobber, diskless, persist, lock, autoclose) 562 store_entrypoint = StoreBackendEntrypoint() 563 with close_on_error(store): --> 564 ds = store_entrypoint.open_dataset( 565 store, 566 mask_and_scale=mask_and_scale, 567 decode_times=decode_times, 568 concat_characters=concat_characters, 569 decode_coords=decode_coords, 570 drop_variables=drop_variables, 571 use_cftime=use_cftime, 572 decode_timedelta=decode_timedelta, 573 ) 574 return ds File ~/.local/src/miniconda/envs/uptodatexarray/lib/python3.10/site-packages/xarray/backends/store.py:27, in StoreBackendEntrypoint.open_dataset(self, store, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta) 24 vars, attrs = store.load() 25 encoding = store.get_encoding() ---> 27 vars, attrs, coord_names = conventions.decode_cf_variables( 28 vars, 29 attrs, 30 mask_and_scale=mask_and_scale, 31 decode_times=decode_times, 32 concat_characters=concat_characters, 33 decode_coords=decode_coords, 34 drop_variables=drop_variables, 35 use_cftime=use_cftime, 36 decode_timedelta=decode_timedelta, 37 ) 39 ds = Dataset(vars, attrs=attrs) 40 ds = ds.set_coords(coord_names.intersection(vars)) File ~/.local/src/miniconda/envs/uptodatexarray/lib/python3.10/site-packages/xarray/conventions.py:503, in decode_cf_variables(variables, attributes, concat_characters, mask_and_scale, decode_times, decode_coords, drop_variables, use_cftime, decode_timedelta) 499 continue 500 stack_char_dim = ( 501 concat_characters and v.dtype == "S1" and v.ndim > 0 and stackable(v.dims[-1]) 502 ) --> 503 new_vars[k] = decode_cf_variable( 504 k, 505 v, 506 concat_characters=concat_characters, 507 mask_and_scale=mask_and_scale, 508 decode_times=decode_times, 509 stack_char_dim=stack_char_dim, 510 use_cftime=use_cftime, 511 decode_timedelta=decode_timedelta, 512 ) 513 if decode_coords in [True, "coordinates", "all"]: 514 var_attrs = new_vars[k].attrs File ~/.local/src/miniconda/envs/uptodatexarray/lib/python3.10/site-packages/xarray/conventions.py:354, in decode_cf_variable(name, var, concat_characters, mask_and_scale, decode_times, decode_endianness, stack_char_dim, use_cftime, decode_timedelta) 351 var = coder.decode(var, name=name) 353 if decode_timedelta: --> 354 var = times.CFTimedeltaCoder().decode(var, name=name) 355 if decode_times: 356 var = times.CFDatetimeCoder(use_cftime=use_cftime).decode(var, name=name) File ~/.local/src/miniconda/envs/uptodatexarray/lib/python3.10/site-packages/xarray/coding/times.py:537, in CFTimedeltaCoder.decode(self, variable, name) 534 def decode(self, variable, name=None): 535 dims, data, attrs, encoding = unpack_for_decoding(variable) --> 537 if "units" in attrs and attrs["units"] in TIME_UNITS: 538 units = pop_to(attrs, encoding, "units") 539 transform = partial(decode_cf_timedelta, units=units) TypeError: unhashable type: 'numpy.ndarray' ``` Anything else we need to know?The following assignation produces the bug :
But these ones does not produce the bug :
Also, i don't know how the units attributes get encoded for writing but i see no difference between EnvironmentThis bug was encountered with versions below this one.
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.4 (main, Mar 31 2022, 08:41:55) [GCC 7.5.0]
python-bits: 64
OS: Linux
OS-release: 5.13.0-52-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: fr_FR.UTF-8
LOCALE: ('fr_FR', 'UTF-8')
libhdf5: 1.10.6
libnetcdf: 4.6.1
xarray: 0.20.1
pandas: 1.4.3
numpy: 1.22.3
scipy: None
netCDF4: 1.5.7
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.5.1.1
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: 1.3.5
dask: None
distributed: None
matplotlib: None
cartopy: None
seaborn: None
numbagg: None
fsspec: None
cupy: None
pint: None
sparse: None
setuptools: 61.2.0
pip: 22.1.2
conda: None
pytest: None
IPython: 8.4.0
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6781/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
1068680815 | PR_kwDOAMm_X84vQ2hE | 6037 | Fix wrong typing for tolerance in reindex | antscloud 57914115 | closed | 0 | 6 | 2021-12-01T17:19:08Z | 2022-01-15T17:28:08Z | 2022-01-15T17:27:56Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/6037 | In the But the In pandas the type of tolerance according to the docs can be a scalar or a list-like object
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6037/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 2, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
869948050 | MDU6SXNzdWU4Njk5NDgwNTA= | 5230 | Same files in open_mfdataset() unclear error message | antscloud 57914115 | closed | 0 | 3 | 2021-04-28T13:26:59Z | 2021-04-30T12:41:17Z | 2021-04-30T12:41:17Z | CONTRIBUTOR | When using xr.open_mfdataset() with two exact same files by mistake, it causes an unclear error message What happened: With of course the
```pythonValueError Traceback (most recent call last) ~/.local/src/miniconda/envs/minireobs/lib/python3.8/site-packages/xarray/backends/api.py in open_mfdataset(paths, chunks, concat_dim, compat, preprocess, engine, lock, data_vars, coords, combine, parallel, join, attrs_file, **kwargs) 966 # Redo ordering from coordinates, ignoring how they were ordered 967 # previously --> 968 combined = combine_by_coords( 969 datasets, 970 compat=compat, ~/.local/src/miniconda/envs/minireobs/lib/python3.8/site-packages/xarray/core/combine.py in combine_by_coords(datasets, compat, data_vars, coords, fill_value, join, combine_attrs) 762 concatenated_grouped_by_data_vars = [] 763 for vars, datasets_with_same_vars in grouped_by_vars: --> 764 combined_ids, concat_dims = _infer_concat_order_from_coords( 765 list(datasets_with_same_vars) 766 ) ~/.local/src/miniconda/envs/minireobs/lib/python3.8/site-packages/xarray/core/combine.py in _infer_concat_order_from_coords(datasets) 106 107 if len(datasets) > 1 and not concat_dims: --> 108 raise ValueError( 109 "Could not find any dimension coordinates to use to " 110 "order the datasets for concatenation" ValueError: Could not find any dimension coordinates to use to order the datasets for concatenation ``` What you expected to happen: A warning saying that we are using the same dataset ? A more explicit error message (exact same dimensions) ? No error and no concatenation, remove duplicated datasets? Environment: Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.8.5 (default, Sep 4 2020, 07:30:14) [GCC 7.3.0] python-bits: 64 OS: Linux OS-release: 5.4.0-72-generic machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: fr_FR.UTF-8 LOCALE: fr_FR.UTF-8 libhdf5: 1.10.4 libnetcdf: 4.7.3 xarray: 0.17.0 pandas: 1.1.1 numpy: 1.19.2 scipy: 1.5.2 netCDF4: 1.5.3 pydap: None h5netcdf: None h5py: None Nio: None zarr: None cftime: 1.2.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: 2021.04.0 distributed: 2021.04.0 matplotlib: 3.3.1 cartopy: None seaborn: None numbagg: None pint: None setuptools: 49.6.0.post20200814 pip: 20.2.2 conda: None pytest: 6.1.1 IPython: 7.18.1 sphinx: None |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5230/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);