issues
5 rows where user = 28786187 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2235746028 | PR_kwDOAMm_X85sQRSg | 8924 | Keep attributes for "bounds" variables | st-bender 28786187 | open | 0 | 0 | 2024-04-10T14:29:58Z | 2024-04-11T14:09:48Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/8924 | Issue #2921 is about mismatching time units between a time variable and its "bounds" companion. However, #2965 does more than fixing #2921, it removes all double attributes from "bounds" variables which has the undesired side effect that there is currently no way to save them to netcdf with xarray. Since the mentioned link is a recommendation and not a hard requirement for CF compliance, these attributes should be left to the caller to prepare the dataset variables appropriately if required. Reduces the amount of surprise that attributes are not written to disk and fixes #8368.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8924/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||||
1861738444 | I_kwDOAMm_X85u99_M | 8099 | inconsistent dimension propagation in `.interp()` with non-numeric types | st-bender 28786187 | open | 0 | 0 | 2023-08-22T15:46:13Z | 2023-08-22T15:55:44Z | CONTRIBUTOR | What happened?Hi, tried to find a similar issue, but haven't seen it. When interpolating a dataset containing non-numeric types using a DataArray for the new coordinates, then the dimensions of the interpolated data set differ from the case with only numeric types. Not sure this is clear enough, see the example. Edit: looks like nothing is interpolated at all in the non-numeric case. What did you expect to happen?The output dimensions should be the same in both cases and match the ones of the numeric-only case. Minimal Complete Verifiable Example```Python import xarray as xr import numpy as np ds = xr.Dataset( {"x": ("a", np.arange(4))}, coords={"a": (np.arange(4) - 1.5)}, ) t = xr.DataArray( np.random.randn(6).reshape((2, 3)) * 0.5, dims=["r", "s"], coords={"r": np.arange(2) - 0.5, "s": np.arange(3) - 1}, ) ds["m"] = ds.x > 1 different dimensions for
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8099/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1350803561 | I_kwDOAMm_X85Qg6Bp | 6953 | DataArray.resample().apply() fails to apply custom function | st-bender 28786187 | open | 0 | 5 | 2022-08-25T12:14:04Z | 2022-08-29T12:41:47Z | CONTRIBUTOR | What happened?Hi,
I try to apply a custom function to aggregate a resampled object via For example calculating the median by passing What did you expect to happen?I would expect the median or any other custom function to be calculated for the resampled data.
It seems to work with pure Minimal Complete Verifiable Example```Python import numpy as np import pandas as pd import xarray as xr idx = pd.date_range("2000-01-01", "2000-12-31") data = xr.DataArray(np.random.randn(len(idx)), coords={"index": idx}) data.resample(index="M").apply(np.median) ``` MVCE confirmation
Relevant log output```PythonAttributeError Traceback (most recent call last) Input In [425], in <cell line: 3>() 1 idx = pd.date_range("2000-01-01", "2000-12-31") 2 data = pd.Series(np.random.randn(len(idx)), index=idx).to_xarray() ----> 3 data.resample(index="M", label="left", loffset="15d").apply(np.median) File ~/Work/miniconda3/envs/20211123_py39/lib/python3.9/site-packages/xarray/core/resample.py:279, in DataArrayResample.apply(self, func, args, shortcut, kwargs)
267 """
268 Backward compatible implementation of File ~/Work/miniconda3/envs/20211123_py39/lib/python3.9/site-packages/xarray/core/resample.py:253, in DataArrayResample.map(self, func, args, shortcut, kwargs) 210 """Apply a function to each array in the group and concatenate them 211 together into a new array. 212 (...) 249 The result of splitting, applying and combining this array. 250 """ 251 # TODO: the argument order for Resample doesn't match that for its parent, 252 # GroupBy --> 253 combined = super().map(func, shortcut=shortcut, args=args, kwargs) 255 # If the aggregation function didn't drop the original resampling 256 # dimension, then we need to do so before we can rename the proxy 257 # dimension we used. 258 if self._dim in combined.coords: File ~/Work/miniconda3/envs/20211123_py39/lib/python3.9/site-packages/xarray/core/groupby.py:1095, in DataArrayGroupByBase.map(self, func, args, shortcut, kwargs) 1093 grouped = self._iter_grouped_shortcut() if shortcut else self._iter_grouped() 1094 applied = (maybe_wrap_array(arr, func(arr, *args, kwargs)) for arr in grouped) -> 1095 return self._combine(applied, shortcut=shortcut) File ~/Work/miniconda3/envs/20211123_py39/lib/python3.9/site-packages/xarray/core/groupby.py:1115, in DataArrayGroupByBase._combine(self, applied, shortcut) 1113 """Recombine the applied objects like the original.""" 1114 applied_example, applied = peek_at(applied) -> 1115 coord, dim, positions = self._infer_concat_args(applied_example) 1116 if shortcut: 1117 combined = self._concat_shortcut(applied, dim, positions) File ~/Work/miniconda3/envs/20211123_py39/lib/python3.9/site-packages/xarray/core/groupby.py:559, in GroupBy._infer_concat_args(self, applied_example) 558 def _infer_concat_args(self, applied_example): --> 559 if self._group_dim in applied_example.dims: 560 coord = self._group 561 positions = self._group_indices AttributeError: 'numpy.float64' object has no attribute 'dims' ``` Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.9.13 | packaged by conda-forge | (main, May 27 2022, 16:56:21)
[GCC 10.3.0]
python-bits: 64
OS: Linux
OS-release: 4.4.0-210-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: C
LOCALE: ('en_GB', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2022.6.0
pandas: 1.4.3
numpy: 1.23.2
scipy: 1.9.0
netCDF4: 1.6.0
pydap: installed
h5netcdf: None
h5py: 3.7.0
Nio: None
zarr: 2.12.0
cftime: 1.6.1
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: None
dask: 2022.6.1
distributed: 2022.6.1
matplotlib: 3.5.3
cartopy: 0.20.3
seaborn: None
numbagg: None
fsspec: 2022.7.1
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 65.2.0
pip: 22.2.2
conda: 4.14.0
pytest: 7.1.2
IPython: 8.4.0
sphinx: 5.1.1
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6953/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
937336962 | MDExOlB1bGxSZXF1ZXN0NjgzOTA5OTgw | 5580 | dataset `__repr__` updates | st-bender 28786187 | closed | 0 | 8 | 2021-07-05T20:03:55Z | 2021-08-21T22:51:16Z | 2021-08-21T22:51:03Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/5580 | After discussing the recent change in the dataset Passes the (updated) testsuite (locally).
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5580/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
931591247 | MDU6SXNzdWU5MzE1OTEyNDc= | 5545 | Increase default `display_max_rows` | st-bender 28786187 | closed | 0 | 19 | 2021-06-28T13:46:14Z | 2021-08-21T22:51:03Z | 2021-08-21T22:51:03Z | CONTRIBUTOR | This must have been introduced into I use Cheers. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5545/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);