issues
2 rows where type = "issue" and user = 24235303 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1075765204 | I_kwDOAMm_X85AHt_U | 6055 | Unexpected type conversion in variables with _FillValue | jp-dark 24235303 | closed | 0 | 4 | 2021-12-09T16:26:54Z | 2023-09-13T12:40:14Z | 2023-09-13T12:40:13Z | CONTRIBUTOR | What happened:
When opening a dataset with an int16 variable with the What you expected to happen: I would expect the type to remain the same when applying the _FillValue. Minimal Complete Verifiable Example: Original example from TileDB-CF-Py issue #117 using the TileDB backend. ```python import tiledb import xarray as xr import numpy as np index = tiledb.Dim(name='index', domain=(0, 3)) domain = tiledb.Domain(index) var = tiledb.Attr(name='var', dtype=np.int16) schema = tiledb.ArraySchema(domain=domain, attrs=[var], sparse=False) tiledb.Array.create('dense_array0', schema) with tiledb.open('dense_array0', 'w') as A: A[:] = np.array([5, 6, 7, 8], dtype=np.int16) ds = xr.open_dataset('dense_array0', engine='tiledb') ds['var'].dtype ``` NetCDF example with the same behavior: ```python import netCDF4 import xarray as xr import numpy as np filename = 'temp_file.nc' with netCDF4.Dataset(filename, mode="w") as group: group.createDimension("index", 4) var = group.createVariable("var", np.int16, ("index",), fill_value=-1) var[:] = np.array([5, 6, 7, 8], dtype=np.int16) dataset = xr.open_dataset(filename) dataset["var"].dtype ``` Anything else we need to know?:
* I was able to verify the type conversion from int16 to float32 occurs in the Environment: I was able to reproduce this with both xarray 0.19.0 and 0.20.1 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/6055/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 1 } |
completed | xarray 13221727 | issue | ||||||
820480606 | MDU6SXNzdWU4MjA0ODA2MDY= | 4987 | A read-only TileDB backend | jp-dark 24235303 | closed | 0 | 14 | 2021-03-02T23:36:46Z | 2021-03-11T17:55:28Z | 2021-03-09T15:14:37Z | CONTRIBUTOR | This is a feature request for a read-only TileDB backend for reading a dense TileDB array into an xarray Dataset. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4987/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);