issues
4 rows where user = 24235303 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
| id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1075765204 | I_kwDOAMm_X85AHt_U | 6055 | Unexpected type conversion in variables with _FillValue | jp-dark 24235303 | closed | 0 | 4 | 2021-12-09T16:26:54Z | 2023-09-13T12:40:14Z | 2023-09-13T12:40:13Z | CONTRIBUTOR | What happened:
When opening a dataset with an int16 variable with the What you expected to happen: I would expect the type to remain the same when applying the _FillValue. Minimal Complete Verifiable Example: Original example from TileDB-CF-Py issue #117 using the TileDB backend. ```python import tiledb import xarray as xr import numpy as np index = tiledb.Dim(name='index', domain=(0, 3)) domain = tiledb.Domain(index) var = tiledb.Attr(name='var', dtype=np.int16) schema = tiledb.ArraySchema(domain=domain, attrs=[var], sparse=False) tiledb.Array.create('dense_array0', schema) with tiledb.open('dense_array0', 'w') as A: A[:] = np.array([5, 6, 7, 8], dtype=np.int16) ds = xr.open_dataset('dense_array0', engine='tiledb') ds['var'].dtype ``` NetCDF example with the same behavior: ```python import netCDF4 import xarray as xr import numpy as np filename = 'temp_file.nc' with netCDF4.Dataset(filename, mode="w") as group: group.createDimension("index", 4) var = group.createVariable("var", np.int16, ("index",), fill_value=-1) var[:] = np.array([5, 6, 7, 8], dtype=np.int16) dataset = xr.open_dataset(filename) dataset["var"].dtype ``` Anything else we need to know?:
* I was able to verify the type conversion from int16 to float32 occurs in the Environment: I was able to reproduce this with both xarray 0.19.0 and 0.20.1 |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/6055/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 1
} |
completed | xarray 13221727 | issue | ||||||
| 822419493 | MDExOlB1bGxSZXF1ZXN0NTg1MDQ3NjYw | 4998 | (WIP) Proof-of-concept backend redesign | jp-dark 24235303 | closed | 0 | 3 | 2021-03-04T19:11:10Z | 2021-09-10T18:03:31Z | 2021-09-10T18:03:31Z | CONTRIBUTOR | 1 | pydata/xarray/pulls/4998 | This branch is intended to demonstrate how the backend API could be modified to support a generic lazy loading DataStore. It should not be merged into master.
|
{
"url": "https://api.github.com/repos/pydata/xarray/issues/4998/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | pull | |||||
| 820480606 | MDU6SXNzdWU4MjA0ODA2MDY= | 4987 | A read-only TileDB backend | jp-dark 24235303 | closed | 0 | 14 | 2021-03-02T23:36:46Z | 2021-03-11T17:55:28Z | 2021-03-09T15:14:37Z | CONTRIBUTOR | This is a feature request for a read-only TileDB backend for reading a dense TileDB array into an xarray Dataset. |
{
"url": "https://api.github.com/repos/pydata/xarray/issues/4987/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
completed | xarray 13221727 | issue | ||||||
| 820485472 | MDExOlB1bGxSZXF1ZXN0NTgzNDIxODQ3 | 4988 | feat: Add a read-only TileDB backend | jp-dark 24235303 | closed | 0 | 2 | 2021-03-02T23:47:32Z | 2021-03-09T15:09:13Z | 2021-03-09T15:09:13Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/4988 |
|
{
"url": "https://api.github.com/repos/pydata/xarray/issues/4988/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} |
xarray 13221727 | pull |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] (
[id] INTEGER PRIMARY KEY,
[node_id] TEXT,
[number] INTEGER,
[title] TEXT,
[user] INTEGER REFERENCES [users]([id]),
[state] TEXT,
[locked] INTEGER,
[assignee] INTEGER REFERENCES [users]([id]),
[milestone] INTEGER REFERENCES [milestones]([id]),
[comments] INTEGER,
[created_at] TEXT,
[updated_at] TEXT,
[closed_at] TEXT,
[author_association] TEXT,
[active_lock_reason] TEXT,
[draft] INTEGER,
[pull_request] TEXT,
[body] TEXT,
[reactions] TEXT,
[performed_via_github_app] TEXT,
[state_reason] TEXT,
[repo] INTEGER REFERENCES [repos]([id]),
[type] TEXT
);
CREATE INDEX [idx_issues_repo]
ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
ON [issues] ([user]);