issues
3 rows where type = "issue" and user = 1924092 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
184238633 | MDU6SXNzdWUxODQyMzg2MzM= | 1053 | Support __matmul__ operator (@) | chris-b1 1924092 | closed | 0 | 9 | 2016-10-20T14:03:19Z | 2019-06-26T18:28:31Z | 2019-06-26T18:28:31Z | MEMBER | xref https://github.com/pandas-dev/pandas/issues/10259 Presumably deferring to the semantics of |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1053/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
182638499 | MDU6SXNzdWUxODI2Mzg0OTk= | 1044 | Labeled repr | chris-b1 1924092 | closed | 0 | 8 | 2016-10-12T21:26:42Z | 2019-02-24T04:46:59Z | 2019-02-24T04:46:59Z | MEMBER | It may be nice to take advantage of labels to show a different, labeled repr - especially for more than 3 dimensions, I personally find the the numpy array one hard to read. Some sample data and the current repr ``` python In [103]: d = xr.DataArray(np.arange(200).reshape((2,5,2,10)), dims=('a', 'b', 'c', 'd'), ...: coords={'a': ['A', 'B'], 'b': ['Cat 1', 'Cat 2', 'Cat 3', 'Cat 4', 'Cat 5'], ...: 'c': ['J', 'K']}) In [104]: d Out[104]: <xarray.DataArray (a: 2, b: 5, c: 2, d: 10)> array([[[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]],
Coordinates: * a (a) <U1 'A' 'B' * b (b) <U5 'Cat 1' 'Cat 2' 'Cat 3' 'Cat 4' 'Cat 5' * c (c) <U1 'J' 'K' * d (d) int64 0 1 2 3 4 5 6 7 8 9 ``` The labeled repr could instead look something (not exactly) like this? ``` <xarray.DataArray (a: 2, b: 5, c: 2, d: 10)> a: 'A' b: 'Cat 1' c x d: 0 2 3 4 5 6 7 8 9 10 J 0 1 2 3 4 5 6 7 8 9 K 10 11 12 13 14 15 16 17 18 19 a: 'A' b: 'Cat 2' c x d <repeat> ... Coordinates: * a (a) <U1 'A' 'B' * b (b) <U5 'Cat 1' 'Cat 2' 'Cat 3' 'Cat 4' 'Cat 5' * c (c) <U1 'J' 'K' * d (d) int64 0 1 2 3 4 5 6 7 8 9 ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1044/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
184327428 | MDU6SXNzdWUxODQzMjc0Mjg= | 1054 | API: are indexes public API? | chris-b1 1924092 | closed | 0 | 1 | 2016-10-20T20:06:47Z | 2016-10-22T00:29:41Z | 2016-10-22T00:29:41Z | MEMBER | Usecase - I have a ``` python from numba import njit @njit def f(arr, slc1, slc2): return arr[slc1].max() - arr[slc2].min() da = xr.DataArray([1., 2., 3.], coords={'key': ['a', 'b', 'c']}) ``` Right now I'm accessing the underlying indexes to get slices, like so: ``` python f(da.values, da.indexes['key'].slice_indexer('a', 'b'), da.indexes['key'].slice_indexer('c', 'c')) Out[52]: -1.0 ``` First question, am I missing some obviously better way to do this? Of course in this example I could just pass in sliced values, but in my actual usecase the data has higher dimensions and I use the slice multiple times across multiple arrays. More broadly, should the underlying indexes be thought of as an implementation detail (e.g. could be swapped out with something else) or is it more-or-less an API guarantee that I'll get a |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1054/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);