home / github

Menu
  • GraphQL API
  • Search all tables

issues

Table actions
  • GraphQL API for issues

4 rows where user = 1924092 sorted by updated_at descending

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: closed_at, created_at (date), updated_at (date), closed_at (date)

type 2

  • issue 3
  • pull 1

state 1

  • closed 4

repo 1

  • xarray 4
id node_id number title user state locked assignee milestone comments created_at updated_at ▲ closed_at author_association active_lock_reason draft pull_request body reactions performed_via_github_app state_reason repo type
184238633 MDU6SXNzdWUxODQyMzg2MzM= 1053 Support __matmul__ operator (@) chris-b1 1924092 closed 0     9 2016-10-20T14:03:19Z 2019-06-26T18:28:31Z 2019-06-26T18:28:31Z MEMBER      

xref https://github.com/pandas-dev/pandas/issues/10259

Presumably deferring to the semantics of np.matmul - not sure if that API is stable yet?

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1053/reactions",
    "total_count": 1,
    "+1": 1,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
182638499 MDU6SXNzdWUxODI2Mzg0OTk= 1044 Labeled repr chris-b1 1924092 closed 0     8 2016-10-12T21:26:42Z 2019-02-24T04:46:59Z 2019-02-24T04:46:59Z MEMBER      

It may be nice to take advantage of labels to show a different, labeled repr - especially for more than 3 dimensions, I personally find the the numpy array one hard to read.

Some sample data and the current repr

``` python

In [103]: d = xr.DataArray(np.arange(200).reshape((2,5,2,10)), dims=('a', 'b', 'c', 'd'), ...: coords={'a': ['A', 'B'], 'b': ['Cat 1', 'Cat 2', 'Cat 3', 'Cat 4', 'Cat 5'], ...: 'c': ['J', 'K']})

In [104]: d Out[104]: <xarray.DataArray (a: 2, b: 5, c: 2, d: 10)> array([[[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]],

    [[ 20,  21,  22,  23,  24,  25,  26,  27,  28,  29],
     [ 30,  31,  32,  33,  34,  35,  36,  37,  38,  39]],

    [[ 40,  41,  42,  43,  44,  45,  46,  47,  48,  49],
     [ 50,  51,  52,  53,  54,  55,  56,  57,  58,  59]],

    [[ 60,  61,  62,  63,  64,  65,  66,  67,  68,  69],
     [ 70,  71,  72,  73,  74,  75,  76,  77,  78,  79]],

    [[ 80,  81,  82,  83,  84,  85,  86,  87,  88,  89],
     [ 90,  91,  92,  93,  94,  95,  96,  97,  98,  99]]],


   [[[100, 101, 102, 103, 104, 105, 106, 107, 108, 109],
     [110, 111, 112, 113, 114, 115, 116, 117, 118, 119]],

    [[120, 121, 122, 123, 124, 125, 126, 127, 128, 129],
     [130, 131, 132, 133, 134, 135, 136, 137, 138, 139]],

    [[140, 141, 142, 143, 144, 145, 146, 147, 148, 149],
     [150, 151, 152, 153, 154, 155, 156, 157, 158, 159]],

    [[160, 161, 162, 163, 164, 165, 166, 167, 168, 169],
     [170, 171, 172, 173, 174, 175, 176, 177, 178, 179]],

    [[180, 181, 182, 183, 184, 185, 186, 187, 188, 189],
     [190, 191, 192, 193, 194, 195, 196, 197, 198, 199]]]])

Coordinates: * a (a) <U1 'A' 'B' * b (b) <U5 'Cat 1' 'Cat 2' 'Cat 3' 'Cat 4' 'Cat 5' * c (c) <U1 'J' 'K' * d (d) int64 0 1 2 3 4 5 6 7 8 9

```

The labeled repr could instead look something (not exactly) like this?

``` <xarray.DataArray (a: 2, b: 5, c: 2, d: 10)>

a: 'A' b: 'Cat 1' c x d: 0 2 3 4 5 6 7 8 9 10 J 0 1 2 3 4 5 6 7 8 9 K 10 11 12 13 14 15 16 17 18 19

a: 'A' b: 'Cat 2' c x d <repeat> ...

Coordinates: * a (a) <U1 'A' 'B' * b (b) <U5 'Cat 1' 'Cat 2' 'Cat 3' 'Cat 4' 'Cat 5' * c (c) <U1 'J' 'K' * d (d) int64 0 1 2 3 4 5 6 7 8 9 ```

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1044/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue
184372900 MDExOlB1bGxSZXF1ZXN0OTAzMDQ4NzA= 1055 DOC: indexes (#1054) chris-b1 1924092 closed 0     2 2016-10-21T00:27:54Z 2016-10-22T00:29:44Z 2016-10-22T00:29:41Z MEMBER   0 pydata/xarray/pulls/1055

closes #1054

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1055/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
    xarray 13221727 pull
184327428 MDU6SXNzdWUxODQzMjc0Mjg= 1054 API: are indexes public API? chris-b1 1924092 closed 0     1 2016-10-20T20:06:47Z 2016-10-22T00:29:41Z 2016-10-22T00:29:41Z MEMBER      

Usecase - I have a DataArray that will be passed into a numba function and need to pass in some slices. Very simplified example:

``` python from numba import njit @njit def f(arr, slc1, slc2): return arr[slc1].max() - arr[slc2].min()

da = xr.DataArray([1., 2., 3.], coords={'key': ['a', 'b', 'c']}) ```

Right now I'm accessing the underlying indexes to get slices, like so:

``` python f(da.values, da.indexes['key'].slice_indexer('a', 'b'), da.indexes['key'].slice_indexer('c', 'c'))

Out[52]: -1.0 ```

First question, am I missing some obviously better way to do this? Of course in this example I could just pass in sliced values, but in my actual usecase the data has higher dimensions and I use the slice multiple times across multiple arrays.

More broadly, should the underlying indexes be thought of as an implementation detail (e.g. could be swapped out with something else) or is it more-or-less an API guarantee that I'll get a pandas Index here?

{
    "url": "https://api.github.com/repos/pydata/xarray/issues/1054/reactions",
    "total_count": 0,
    "+1": 0,
    "-1": 0,
    "laugh": 0,
    "hooray": 0,
    "confused": 0,
    "heart": 0,
    "rocket": 0,
    "eyes": 0
}
  completed xarray 13221727 issue

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [issues] (
   [id] INTEGER PRIMARY KEY,
   [node_id] TEXT,
   [number] INTEGER,
   [title] TEXT,
   [user] INTEGER REFERENCES [users]([id]),
   [state] TEXT,
   [locked] INTEGER,
   [assignee] INTEGER REFERENCES [users]([id]),
   [milestone] INTEGER REFERENCES [milestones]([id]),
   [comments] INTEGER,
   [created_at] TEXT,
   [updated_at] TEXT,
   [closed_at] TEXT,
   [author_association] TEXT,
   [active_lock_reason] TEXT,
   [draft] INTEGER,
   [pull_request] TEXT,
   [body] TEXT,
   [reactions] TEXT,
   [performed_via_github_app] TEXT,
   [state_reason] TEXT,
   [repo] INTEGER REFERENCES [repos]([id]),
   [type] TEXT
);
CREATE INDEX [idx_issues_repo]
    ON [issues] ([repo]);
CREATE INDEX [idx_issues_milestone]
    ON [issues] ([milestone]);
CREATE INDEX [idx_issues_assignee]
    ON [issues] ([assignee]);
CREATE INDEX [idx_issues_user]
    ON [issues] ([user]);
Powered by Datasette · Queries took 3517.658ms · About: xarray-datasette