issues
2 rows where state = "open" and user = 33153877 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1668898601 | I_kwDOAMm_X85jeV8p | 7758 | Provide a way to specify how long open_dataset tries to fetch data before timing out | huaracheguarache 33153877 | open | 0 | 6 | 2023-04-14T20:13:52Z | 2023-04-26T15:31:06Z | NONE | Is your feature request related to a problem?I encountered an issue with the open_dataset function in my code when the server I fetch data from experienced a network issue. The whole script froze because open_dataset was unable to fetch the data from the server. Describe the solution you'd likeAn argument that allows you to specify how long open_dataset tries to fetch the data before timing out. Describe alternatives you've consideredRight now I'm considering trying to send a HEAD request to the server and checking the response with a try-except block to catch a bad status code. I'm not sure how robust this alternative is, and I would prefer if there would be a way to natively specify a timeout in open_dataset. Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7758/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1572434353 | I_kwDOAMm_X85duXGx | 7504 | Selecting dates with .sel() doesn't work when time index is in cftime | huaracheguarache 33153877 | open | 0 | 2 | 2023-02-06T11:56:07Z | 2023-02-06T18:27:15Z | NONE | What happened?When I try to select a subset of the data in a dataset/array with a list containing dates it fails when the time index is in cftime, and I get the following error message:
What did you expect to happen?I expect selecting a set of dates with a list to work the same way as when the time index is in datetime64. Minimal Complete Verifiable Example```Python import xarray as xr import numpy as np ds = xr.open_dataset("https://thredds.met.no/thredds/dodsC/osisaf/met.no/ice/index/v2p1/nh/osisaf_nh_sie_daily.nc") Time coordinates are in datetime64, and selecting dates with a list works.print(ds.time) print(ds.sel(time=["2023-01-01", "2023-01-02"])) Converting the calendar to all_leap changes the time coordinates to use cftime instead of datetime64.ds = ds.convert_calendar("all_leap", missing=np.nan).interpolate_na() Time coordinates are in cftime, and selecting dates with a list fails.print(ds.time) print(ds.sel(time=["2023-01-01", "2023-01-02"])) ``` MVCE confirmation
Relevant log output
Anything else we need to know?No response Environment
/var/home/michael/mambaforge/envs/geoscience/lib/python3.10/site-packages/_distutils_hack/__init__.py:33: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.9 | packaged by conda-forge | (main, Feb 2 2023, 20:20:04) [GCC 11.3.0]
python-bits: 64
OS: Linux
OS-release: 6.1.9-200.fc37.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8
LOCALE: ('en_GB', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2022.11.0
pandas: 1.5.1
numpy: 1.23.4
scipy: 1.9.3
netCDF4: 1.6.1
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: 1.3.6
dask: None
distributed: None
matplotlib: 3.6.2
cartopy: 0.21.0
seaborn: 0.12.1
numbagg: None
fsspec: None
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 65.5.1
pip: 22.3.1
conda: None
pytest: None
IPython: 8.6.0
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7504/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);