issues
3 rows where user = 33153877 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: locked, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1668898601 | I_kwDOAMm_X85jeV8p | 7758 | Provide a way to specify how long open_dataset tries to fetch data before timing out | huaracheguarache 33153877 | open | 0 | 6 | 2023-04-14T20:13:52Z | 2023-04-26T15:31:06Z | NONE | Is your feature request related to a problem?I encountered an issue with the open_dataset function in my code when the server I fetch data from experienced a network issue. The whole script froze because open_dataset was unable to fetch the data from the server. Describe the solution you'd likeAn argument that allows you to specify how long open_dataset tries to fetch the data before timing out. Describe alternatives you've consideredRight now I'm considering trying to send a HEAD request to the server and checking the response with a try-except block to catch a bad status code. I'm not sure how robust this alternative is, and I would prefer if there would be a way to natively specify a timeout in open_dataset. Additional contextNo response |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7758/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1572434353 | I_kwDOAMm_X85duXGx | 7504 | Selecting dates with .sel() doesn't work when time index is in cftime | huaracheguarache 33153877 | open | 0 | 2 | 2023-02-06T11:56:07Z | 2023-02-06T18:27:15Z | NONE | What happened?When I try to select a subset of the data in a dataset/array with a list containing dates it fails when the time index is in cftime, and I get the following error message:
What did you expect to happen?I expect selecting a set of dates with a list to work the same way as when the time index is in datetime64. Minimal Complete Verifiable Example```Python import xarray as xr import numpy as np ds = xr.open_dataset("https://thredds.met.no/thredds/dodsC/osisaf/met.no/ice/index/v2p1/nh/osisaf_nh_sie_daily.nc") Time coordinates are in datetime64, and selecting dates with a list works.print(ds.time) print(ds.sel(time=["2023-01-01", "2023-01-02"])) Converting the calendar to all_leap changes the time coordinates to use cftime instead of datetime64.ds = ds.convert_calendar("all_leap", missing=np.nan).interpolate_na() Time coordinates are in cftime, and selecting dates with a list fails.print(ds.time) print(ds.sel(time=["2023-01-01", "2023-01-02"])) ``` MVCE confirmation
Relevant log output
Anything else we need to know?No response Environment
/var/home/michael/mambaforge/envs/geoscience/lib/python3.10/site-packages/_distutils_hack/__init__.py:33: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.9 | packaged by conda-forge | (main, Feb 2 2023, 20:20:04) [GCC 11.3.0]
python-bits: 64
OS: Linux
OS-release: 6.1.9-200.fc37.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_GB.UTF-8
LOCALE: ('en_GB', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2022.11.0
pandas: 1.5.1
numpy: 1.23.4
scipy: 1.9.3
netCDF4: 1.6.1
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: None
iris: None
bottleneck: 1.3.6
dask: None
distributed: None
matplotlib: 3.6.2
cartopy: 0.21.0
seaborn: 0.12.1
numbagg: None
fsspec: None
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 65.5.1
pip: 22.3.1
conda: None
pytest: None
IPython: 8.6.0
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7504/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
1052918815 | I_kwDOAMm_X84-wkQf | 5987 | Plotting interpolated data causes artefacts | huaracheguarache 33153877 | closed | 1 | 8 | 2021-11-14T11:50:13Z | 2021-11-19T22:35:09Z | 2021-11-19T22:35:09Z | NONE | What happened: I'm trying to do some analysis of CMIP6 model data, and I want to plot multi-model ensembles. In order to do that I need to regrid all of the models to a common grid. Whenever I try to plot data from a regridded model there's a white line along the central longitude and the poles. I use the PlateCarree projection and it doesn't matter what I choose as the central longitude; there's always a white line there. The code I've included below produces 4 plots. The first one is of data that hasn't been interpolated and there's no white line: The next three are with interpolated data and with different central longitudes. They all have a white line at the central longitude. central_longitude=0 central_longitude=33 central_longitude=164 What you expected to happen: No plot artefacts. Minimal Complete Verifiable Example: ```python import xarray as xr import matplotlib.pyplot as plt import cartopy.crs as ccrs cesm2_waccm = xr.open_dataset('pr_day_CESM2-WACCM_ssp245_r2i1p1f1_gn_20750101-20841231.nc') mpi = xr.open_dataset('pr_day_MPI-ESM1-2-LR_ssp245_r1i1p1f1_gn_20750101-20941231.nc') cesm2_waccm_subset = cesm2_waccm.sel(time=slice('2075-01-01', '2075-12-31')).mean(dim='time') mpi_subset = mpi.sel(time=slice('2075-01-01', '2075-12-31')).mean(dim='time') map_proj = ccrs.PlateCarree() This works.plot = mpi_subset.pr.plot(subplot_kws={'projection': map_proj}) plot.axes.coastlines() plt.show() mpi_interp = mpi_subset.interp(lat=cesm2_waccm_subset['lat'], lon=cesm2_waccm_subset['lon']) A randomly chosen set of central longitudes for plots.longitudes = [0, 33, 164] for lon in longitudes: map_proj = ccrs.PlateCarree(central_longitude=lon) # Has a white line at the central longitude. plot = mpi_interp.pr.plot(subplot_kws={'projection': map_proj}) plot.axes.coastlines() plt.show() ``` Anything else we need to know?: Here's the data I used for plotting: Environment: Output of <tt>xr.show_versions()</tt>``` In [3]: xr.show_versions() INSTALLED VERSIONS ------------------ commit: None python: 3.9.7 | packaged by conda-forge | (default, Sep 29 2021, 19:23:11) [GCC 9.4.0] python-bits: 64 OS: Linux OS-release: 5.14.16-301.fc35.x86_64 machine: x86_64 processor: x86_64 byteorder: little LC_ALL: None LANG: en_GB.UTF-8 LOCALE: ('en_GB', 'UTF-8') libhdf5: 1.12.1 libnetcdf: None xarray: 0.20.1 pandas: 1.3.4 numpy: 1.21.4 scipy: 1.7.2 netCDF4: None pydap: None h5netcdf: 0.11.0 h5py: 3.4.0 Nio: None zarr: None cftime: 1.5.1.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: None iris: None bottleneck: None dask: None distributed: None matplotlib: 3.3.2 cartopy: 0.20.1 seaborn: None numbagg: None fsspec: None cupy: None pint: None sparse: None setuptools: 58.5.3 pip: 21.3.1 conda: None pytest: None IPython: 7.29.0 sphinx: None ``` |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/5987/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);