issues
3 rows where state = "open" and user = 3169620 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2064544219 | I_kwDOAMm_X857DnHb | 8583 | Unexpected Dataset aggregation behavior when weighting | duncanwp 3169620 | open | 0 | 1 | 2024-01-03T19:32:11Z | 2024-01-04T19:12:58Z | CONTRIBUTOR | What happened?When aggregating a dataset over specified dimensions I don't expect variables which don't have those dimensions to be aggregated. What did you expect to happen?When a weighting is applied to the aggregation, variables which do not have the aggregation dimensions are nevertheless aggregated. Presumably because the weights get broadcast across those variables. Perhaps this is the intended behavior but it seems surprising to me and should at least be documented I think. Minimal Complete Verifiable Example```Python import xarray as xr import numpy as np var1 = np.ones((2, 2, 3)) var2 = np.ones((3)) lon = np.arange(4).reshape(2, 2) lat = np.arange(4).reshape(2, 2) ds = xr.Dataset( { "temperature": (["x", "y", "time"], var1), "precipitation": (["time"], var2), }, coords={ "lon": (["x", "y"], lon), "lat": (["x", "y"], lat), "time": np.arange(3), }, ) print(ds.sum(['x', 'y'])) Precipitation (with no x or y dimension) is not summed over, leading to values [1. 1. 1.]print(ds.weighted(xr.ones_like(ds['temperature'])).sum(['x', 'y'])) Precipitation is now summed over, leading to values [4. 4. 4.]``` MVCE confirmation
Relevant log outputNo response Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.9.16 | packaged by conda-forge | (main, Feb 1 2023, 21:38:11)
[Clang 14.0.6 ]
python-bits: 64
OS: Darwin
OS-release: 23.1.0
machine: arm64
processor: arm
byteorder: little
LC_ALL: None
LANG: None
LOCALE: (None, 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.9.1
xarray: 2023.3.0
pandas: 1.5.3
numpy: 1.23.5
scipy: 1.10.1
netCDF4: 1.6.3
pydap: None
h5netcdf: None
h5py: 3.8.0
Nio: None
zarr: 2.14.2
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.3.6
cfgrib: None
iris: 3.4.1
bottleneck: None
dask: 2023.3.2
distributed: 2023.3.2.1
matplotlib: 3.7.1
cartopy: 0.21.1
seaborn: 0.12.2
numbagg: None
fsspec: 2023.10.0
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 67.6.1
pip: 23.0.1
conda: None
pytest: None
mypy: None
IPython: 8.12.0
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8583/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
283279898 | MDExOlB1bGxSZXF1ZXN0MTU5MjAzMTkx | 1791 | Cookbook docs | duncanwp 3169620 | open | 0 | 0 | 2017-12-19T15:55:39Z | 2022-06-09T14:50:17Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/1791 | Closes #1790 This is a bit empty at the moment so feel free to add any snippets you think would be useful :-) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1791/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||||
282964952 | MDU6SXNzdWUyODI5NjQ5NTI= | 1790 | 'Cookbook' page | duncanwp 3169620 | open | 0 | 6 | 2017-12-18T17:46:25Z | 2019-12-08T23:31:08Z | CONTRIBUTOR | Would there be interest in adding a 'cookbook' section to the docs a-la Pandas? The current Recipes section might then be better renamed as Gallery? It's useful for the kind of thing which isn't a full-fledged example, but might be useful nonetheless. I'll hapily put together a pull-request if there's interest. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1790/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);