issues
7 rows where user = 3169620 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2064544219 | I_kwDOAMm_X857DnHb | 8583 | Unexpected Dataset aggregation behavior when weighting | duncanwp 3169620 | open | 0 | 1 | 2024-01-03T19:32:11Z | 2024-01-04T19:12:58Z | CONTRIBUTOR | What happened?When aggregating a dataset over specified dimensions I don't expect variables which don't have those dimensions to be aggregated. What did you expect to happen?When a weighting is applied to the aggregation, variables which do not have the aggregation dimensions are nevertheless aggregated. Presumably because the weights get broadcast across those variables. Perhaps this is the intended behavior but it seems surprising to me and should at least be documented I think. Minimal Complete Verifiable Example```Python import xarray as xr import numpy as np var1 = np.ones((2, 2, 3)) var2 = np.ones((3)) lon = np.arange(4).reshape(2, 2) lat = np.arange(4).reshape(2, 2) ds = xr.Dataset( { "temperature": (["x", "y", "time"], var1), "precipitation": (["time"], var2), }, coords={ "lon": (["x", "y"], lon), "lat": (["x", "y"], lat), "time": np.arange(3), }, ) print(ds.sum(['x', 'y'])) Precipitation (with no x or y dimension) is not summed over, leading to values [1. 1. 1.]print(ds.weighted(xr.ones_like(ds['temperature'])).sum(['x', 'y'])) Precipitation is now summed over, leading to values [4. 4. 4.]``` MVCE confirmation
Relevant log outputNo response Anything else we need to know?No response Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.9.16 | packaged by conda-forge | (main, Feb 1 2023, 21:38:11)
[Clang 14.0.6 ]
python-bits: 64
OS: Darwin
OS-release: 23.1.0
machine: arm64
processor: arm
byteorder: little
LC_ALL: None
LANG: None
LOCALE: (None, 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.9.1
xarray: 2023.3.0
pandas: 1.5.3
numpy: 1.23.5
scipy: 1.10.1
netCDF4: 1.6.3
pydap: None
h5netcdf: None
h5py: 3.8.0
Nio: None
zarr: 2.14.2
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: 1.3.6
cfgrib: None
iris: 3.4.1
bottleneck: None
dask: 2023.3.2
distributed: 2023.3.2.1
matplotlib: 3.7.1
cartopy: 0.21.1
seaborn: 0.12.2
numbagg: None
fsspec: 2023.10.0
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 67.6.1
pip: 23.0.1
conda: None
pytest: None
mypy: None
IPython: 8.12.0
sphinx: None
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/8583/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
283279898 | MDExOlB1bGxSZXF1ZXN0MTU5MjAzMTkx | 1791 | Cookbook docs | duncanwp 3169620 | open | 0 | 0 | 2017-12-19T15:55:39Z | 2022-06-09T14:50:17Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/1791 | Closes #1790 This is a bit empty at the moment so feel free to add any snippets you think would be useful :-) |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1791/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||||
282964952 | MDU6SXNzdWUyODI5NjQ5NTI= | 1790 | 'Cookbook' page | duncanwp 3169620 | open | 0 | 6 | 2017-12-18T17:46:25Z | 2019-12-08T23:31:08Z | CONTRIBUTOR | Would there be interest in adding a 'cookbook' section to the docs a-la Pandas? The current Recipes section might then be better renamed as Gallery? It's useful for the kind of thing which isn't a full-fledged example, but might be useful nonetheless. I'll hapily put together a pull-request if there's interest. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1790/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | issue | ||||||||
281897468 | MDU6SXNzdWUyODE4OTc0Njg= | 1778 | ValueError on empty selection with dask based DataArrays | duncanwp 3169620 | closed | 0 | 0.11.1 3801867 | 2 | 2017-12-13T21:09:42Z | 2019-07-12T13:41:08Z | 2019-07-12T13:41:08Z | CONTRIBUTOR | Code Sample, a copy-pastable example if possible```python import xarray as xr import numpy as np da = xr.DataArray(np.random.rand(15), dims=['latitude'], coords={'latitude':np.linspace(90, -90, 15)}) This gives an empty latitude sliceprint(da.sel(latitude=slice(20, 60))) After converting the DataArray to dask...da=da.chunk() ...this throws a ValueError due to 'conflicting sizes'print(da.sel(latitude=slice(20, 60))) ``` Problem descriptionI would expect the dask based DataArray to return an empty slice just as the numpy one does. Although arguably it would be nicer if both returned the latitude values between 20 and 60 - regardless of the direction of the coordinate. Perhaps the sel method could check whether the coordinate is increasing or decreasing? Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1778/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | |||||
293445250 | MDU6SXNzdWUyOTM0NDUyNTA= | 1877 | TypeError for NetCDF float16 output | duncanwp 3169620 | closed | 0 | 4 | 2018-02-01T08:39:03Z | 2018-02-26T10:46:47Z | 2018-02-26T10:46:47Z | CONTRIBUTOR | ```python ds = xr.Dataset({"test": np.arange(0, 5, dtype='float16')}) ds.to_netcdf('test.nc') ``` This fails because the float16 type doesn't exist for NetCDF files, throwing an It might be nice if the xarray netCDF engine promoted this to float32 instead. Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1877/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
278286073 | MDExOlB1bGxSZXF1ZXN0MTU1NzMxMjI3 | 1750 | xarray to and from Iris | duncanwp 3169620 | closed | 0 | 16 | 2017-11-30T22:04:46Z | 2018-01-03T10:19:16Z | 2017-12-20T15:14:17Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/1750 |
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1750/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
273459295 | MDU6SXNzdWUyNzM0NTkyOTU= | 1715 | Error accessing isnull() and notnull() on Dataset | duncanwp 3169620 | closed | 0 | 3 | 2017-11-13T14:59:30Z | 2017-11-13T16:07:01Z | 2017-11-13T16:07:01Z | CONTRIBUTOR | Code Sample, a copy-pastable example if possible```python Create basic Datasetimport numpy as np import pandas as pd import xarray as xr temp = 15 + 8 * np.random.randn(2, 2, 3) precip = 10 * np.random.rand(2, 2, 3) lon = [[-99.83, -99.32], [-99.79, -99.23]] lat = [[42.25, 42.21], [42.63, 42.59]] for real use cases, its good practice to supply array attributes such asunits, but we won't bother here for the sake of brevityds = xr.Dataset({'temperature': (['x', 'y', 'time'], temp), 'precipitation': (['x', 'y', 'time'], precip)}, coords={'lon': (['x', 'y'], lon), 'lat': (['x', 'y'], lat), 'time': pd.date_range('2014-09-06', periods=3), 'reference_time': pd.Timestamp('2014-09-05')}) Both of these throw attribute errorsds.notnull() ds.isnull()``` Problem descriptionThe above methods throw Expected OutputDataset of boolean DataArrays indicating null-ness. Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1715/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);