issues
11 rows where state = "closed" and user = 221526 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: comments, closed_at, created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1473329967 | I_kwDOAMm_X85X0Tsv | 7350 | Coordinate variable gains coordinate on subset | dopplershift 221526 | closed | 0 | 5 | 2022-12-02T19:18:14Z | 2022-12-05T22:56:30Z | 2022-12-05T22:56:30Z | CONTRIBUTOR | What happened?When subsetting a DataArray along a dimension down to a single item, the other coordinate variables gain this scalar coordinate. What did you expect to happen?Coordinate variables should not have their coordinates changed. Minimal Complete Verifiable Example```Python import numpy as np import xarray as xr lat = np.array([25, 35, 45]) lon = np.array([-105, -95, -85, -75]) time = np.array([0, 1]) data = np.arange(lat.size * lon.size * time.size) test_data = xr.DataArray(data.reshape((time.size, lat.size, lon.size)), coords=dict(lat=lat, lon=lon, time=time), dims=('time', 'lat', 'lon')) print(test_data.lat.coords) # Only 'lat' print(test_data.isel(time=0).lat.coords) # Has both 'lat' and 'time' pritn(test_data.isel(time=[0, 1]).lat.coords) # Only 'lat' ``` MVCE confirmation
Relevant log outputNo response Anything else we need to know?This occurs with both the latest 2022.11.0 release and current main. Environment
INSTALLED VERSIONS
------------------
commit: None
python: 3.10.8 | packaged by conda-forge | (main, Nov 22 2022, 08:31:57) [Clang 14.0.6 ]
python-bits: 64
OS: Darwin
OS-release: 21.6.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.12.2
libnetcdf: 4.8.1
xarray: 2022.11.0
pandas: 1.5.2
numpy: 1.23.5
scipy: 1.9.3
netCDF4: 1.6.2
pydap: None
h5netcdf: None
h5py: None
Nio: None
zarr: None
cftime: 1.6.2
nc_time_axis: None
PseudoNetCDF: None
rasterio: None
cfgrib: 0.9.10.2
iris: None
bottleneck: 1.3.5
dask: 2022.6.1
distributed: 2022.6.1
matplotlib: 3.6.2
cartopy: 0.21.0
seaborn: None
numbagg: None
fsspec: 2022.11.0
cupy: None
pint: 0.20.1
sparse: None
flox: None
numpy_groupies: None
setuptools: 65.5.1
pip: 22.3.1
conda: None
pytest: 7.2.0
IPython: 8.6.0
sphinx: 5.3.0
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/7350/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
667550022 | MDU6SXNzdWU2Njc1NTAwMjI= | 4283 | Selection with datetime64[ns] fails with Pandas 1.1.0 | dopplershift 221526 | closed | 0 | 2 | 2020-07-29T05:01:14Z | 2020-09-16T01:33:30Z | 2020-09-16T01:33:30Z | CONTRIBUTOR | I ran into this issue with a netCDF file with the following time variable: ``` double time1(time1) ; time1:_FillValue = NaN ; time1:standard_name = "time" ; time1:long_name = "time" ; time1:udunits = "Hour since 2017-09-05T12:00:00Z" ; time1:units = "Hour since 2017-09-05T12:00:00+00:00" ; time1:calendar = "proleptic_gregorian" ; time1 = 0, 3, 6, 9, 12, 15, 18, 21, 24 ;
t = np.array(['2017-09-05T12:00:00.000000000', '2017-09-05T15:00:00.000000000'], dtype='datetime64[ns]') da = xr.DataArray(np.ones(t.shape), dims=('time',), coords=(t,)) da.loc[{'time':t[0]}] # Works on pandas 1.0.5
KeyError Traceback (most recent call last) <ipython-input-11-3e0afa0bd195> in <module> ----> 1 da.loc[{'time':t[0]}] ~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/dataarray.py in getitem(self, key) 196 labels = indexing.expanded_indexer(key, self.data_array.ndim) 197 key = dict(zip(self.data_array.dims, labels)) --> 198 return self.data_array.sel(**key) 199 200 def setitem(self, key, value) -> None: ~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/dataarray.py in sel(self, indexers, method, tolerance, drop, **indexers_kwargs) 1147 1148 """ -> 1149 ds = self._to_temp_dataset().sel( 1150 indexers=indexers, 1151 drop=drop, ~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/dataset.py in sel(self, indexers, method, tolerance, drop, **indexers_kwargs) 2099 """ 2100 indexers = either_dict_or_kwargs(indexers, indexers_kwargs, "sel") -> 2101 pos_indexers, new_indexes = remap_label_indexers( 2102 self, indexers=indexers, method=method, tolerance=tolerance 2103 ) ~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/coordinates.py in remap_label_indexers(obj, indexers, method, tolerance, **indexers_kwargs) 394 } 395 --> 396 pos_indexers, new_indexes = indexing.remap_label_indexers( 397 obj, v_indexers, method=method, tolerance=tolerance 398 ) ~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/indexing.py in remap_label_indexers(data_obj, indexers, method, tolerance) 268 coords_dtype = data_obj.coords[dim].dtype 269 label = maybe_cast_to_coords_dtype(label, coords_dtype) --> 270 idxr, new_idx = convert_label_indexer(index, label, dim, method, tolerance) 271 pos_indexers[dim] = idxr 272 if new_idx is not None: ~/miniconda3/envs/py38/lib/python3.8/site-packages/xarray/core/indexing.py in convert_label_indexer(index, label, index_name, method, tolerance) 187 indexer = index.get_loc(label.item()) 188 else: --> 189 indexer = index.get_loc( 190 label.item(), method=method, tolerance=tolerance 191 ) ~/miniconda3/envs/py38/lib/python3.8/site-packages/pandas/core/indexes/datetimes.py in get_loc(self, key, method, tolerance) 620 else: 621 # unrecognized type --> 622 raise KeyError(key) 623 624 try: KeyError: 1504612800000000000 ``` what's interesting is changing the units of t = np.array(['2017-09-05T12:00:00.000000000', '2017-09-05T15:00:00.000000000'], dtype='datetime64[s]') da = xr.DataArray(np.ones(t.shape), dims=('time',), coords=(t,)) da.loc[{'time':t[0]}] # Works ``` Environment: Python 3.8 from conda-forge on macOS 10.15.4 Output of <tt>xr.show_versions()</tt>INSTALLED VERSIONS ------------------ commit: None python: 3.8.5 | packaged by conda-forge | (default, Jul 24 2020, 01:06:20) [Clang 10.0.1 ] python-bits: 64 OS: Darwin OS-release: 19.6.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: en_US.UTF-8 LOCALE: en_US.UTF-8 libhdf5: 1.10.6 libnetcdf: 4.7.4 xarray: 0.16.0 pandas: 1.1.0 numpy: 1.19.1 scipy: 1.5.2 netCDF4: 1.5.4 pydap: None h5netcdf: None h5py: 2.10.0 Nio: None zarr: None cftime: 1.2.1 nc_time_axis: None PseudoNetCDF: None rasterio: None cfgrib: 0.9.8.3 iris: None bottleneck: None dask: 2.21.0 distributed: 2.21.0 matplotlib: 3.3.0 cartopy: 0.18.0 seaborn: None numbagg: None pint: 0.14 setuptools: 49.2.0.post20200712 pip: 20.1.1 conda: None pytest: 6.0.0 IPython: 7.16.1 sphinx: 2.4.4 |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/4283/reactions", "total_count": 4, "+1": 4, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
605920781 | MDExOlB1bGxSZXF1ZXN0NDA4MjM3MjUz | 3998 | Fix handling of abbreviated units like msec | dopplershift 221526 | closed | 0 | 3 | 2020-04-23T22:43:51Z | 2020-04-24T19:18:00Z | 2020-04-24T07:16:10Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/3998 | By default, xarray tries to decode times with pandas and falls back to cftime. This fixes the exception handler to fallback properly in the cases an unhandled abbreviated unit is passed in. An additional item here would be to add support for msec, etc. to xarray's handling, but I wasn't sure the best way to handle that. I'm happy just if things properly fall back to cftime.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3998/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
323823894 | MDExOlB1bGxSZXF1ZXN0MTg4NTg4ODEy | 2144 | Add strftime() to datetime accessor | dopplershift 221526 | closed | 0 | 13 | 2018-05-16T23:37:34Z | 2020-04-23T22:40:41Z | 2019-06-01T03:22:44Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/2144 | This matches pandas and makes it possible to pass a datetime dataarray to something expecting to be able to use strftime().
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2144/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
501730864 | MDExOlB1bGxSZXF1ZXN0MzIzOTQ4NTA1 | 3367 | Remove setting of universal wheels | dopplershift 221526 | closed | 0 | 4 | 2019-10-02T21:15:48Z | 2019-10-05T20:05:58Z | 2019-10-02T21:43:45Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/3367 | Universal wheels indicate that one wheel supports Python 2 and 3. This is no longer the case for xarray. This causes builds to generate files with names like xarray-0.13.0-py2.py3-none-any.whl, which can cause pip to incorrectly install the wheel on Python 2 when installing from a list of wheel files. |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3367/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
318761320 | MDU6SXNzdWUzMTg3NjEzMjA= | 2090 | strftime and/or format support for DatetimeAccessor | dopplershift 221526 | closed | 0 | 1 | 2018-04-29T23:55:12Z | 2019-06-01T07:51:17Z | 2019-06-01T07:51:17Z | CONTRIBUTOR | There's no easy way currently to control the conversion to string of time values/series. For this purpose, Panda's own Is there interest in adding similar functionality to xarray? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2090/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
322019660 | MDExOlB1bGxSZXF1ZXN0MTg3MjU4ODcx | 2115 | Fix docstring formatting for load(). | dopplershift 221526 | closed | 0 | 1 | 2018-05-10T17:44:32Z | 2018-05-10T18:24:04Z | 2018-05-10T17:50:00Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/2115 | Need '::' to introduce a code literal block. This was causing MetPy's doc build to warn (since we inherit AbstractDataStore). |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2115/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
308768432 | MDExOlB1bGxSZXF1ZXN0MTc3NTkzMzUy | 2016 | Allow _FillValue and missing_value to differ (Fixes #1749) | dopplershift 221526 | closed | 0 | 9 | 2018-03-26T23:20:10Z | 2018-04-20T00:35:22Z | 2018-03-31T01:16:00Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/2016 | The CF standard permits both values, and them to have different values, so we should not be treating this as an error--just mask out all of them.
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2016/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | |||||
303727896 | MDU6SXNzdWUzMDM3Mjc4OTY= | 1976 | What's wrong with "conflicting" _FillValue and missing_value? | dopplershift 221526 | closed | 0 | 2 | 2018-03-09T05:21:27Z | 2018-03-09T17:45:35Z | 2018-03-09T17:45:35Z | CONTRIBUTOR | So this exception: ``` ValueError: Conflicting _FillValue and missing_value attrs on a variable 'MergedBaseReflectivityQC_altitude_above_msl': -999.0 vs. -99.0 Consider opening the offending dataset using decode_cf=False, correcting the attrs and decoding explicitly using xarray.decode_cf().
This happens in this case because the source GRIB file has one value specified for "missing" (maps to Is this a technical limitation? Or just something that needs an implementation? |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1976/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
250747314 | MDExOlB1bGxSZXF1ZXN0MTM2MTEzMjA2 | 1508 | ENH: Support using opened netCDF4.Dataset (Fixes #1459) | dopplershift 221526 | closed | 0 | 0.10 2415632 | 5 | 2017-08-16T20:19:01Z | 2017-08-31T22:24:36Z | 2017-08-31T17:18:51Z | CONTRIBUTOR | 0 | pydata/xarray/pulls/1508 | Make the filename argument to
1459 discussed adding an alternate constructor (i.e. a class method) to |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1508/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
xarray 13221727 | pull | ||||
236595831 | MDU6SXNzdWUyMzY1OTU4MzE= | 1459 | xarray.Dataset from existing netCDF4.Dataset | dopplershift 221526 | closed | 0 | 2 | 2017-06-16T21:03:21Z | 2017-08-31T17:18:51Z | 2017-08-31T17:18:51Z | CONTRIBUTOR | It would be really handy to be able to initialize a It seems like the quick solution here would be to make |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/1459/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);