issues
7 rows where state = "closed" and user = 1872600 sorted by updated_at descending
This data as json, CSV (advanced)
Suggested facets: created_at (date), updated_at (date), closed_at (date)
id | node_id | number | title | user | state | locked | assignee | milestone | comments | created_at | updated_at ▲ | closed_at | author_association | active_lock_reason | draft | pull_request | body | reactions | performed_via_github_app | state_reason | repo | type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
332471780 | MDU6SXNzdWUzMzI0NzE3ODA= | 2233 | Problem opening unstructured grid ocean forecasts with 4D vertical coordinates | rsignell-usgs 1872600 | closed | 0 | 15 | 2018-06-14T16:15:56Z | 2023-07-19T18:25:35Z | 2023-07-19T18:25:35Z | NONE | We can't open the IOOS New England triangular mesh ocean forecasts with Xarray because it doesn't understand their more complex CF vertical coordinate system.
<class 'netCDF4._netCDF4.Variable'> float32 temp(time, siglay, node) long_name: temperature standard_name: sea_water_potential_temperature units: degrees_C coordinates: time siglay lat lon type: data coverage_content_type: modelResult mesh: fvcom_mesh location: node unlimited dimensions: time current shape = (145, 40, 53087) print(nc['siglay']) <class 'netCDF4._netCDF4.Variable'>
float32 siglay(siglay, node)
long_name: Sigma Layers
standard_name: ocean_sigma_coordinate
positive: up
valid_min: -1.0
valid_max: 0.0
formula_terms: sigma: siglay eta: zeta depth: h
unlimited dimensions:
current shape = (40, 53087)
While we understand that there is no way to represent the vertical coordinate with a one-dimensional coordinate that xarray would like, it would be nice if there way to at least load the variable array data like Is there any workaround for this?
```
---------------------------------------------------------------------------
MissingDimensionsError Traceback (most recent call last)
<ipython-input-18-723c5c460db2> in <module>()
----> 1 xr.open_dataset(url)
~/miniconda3/envs/pangeo/lib/python3.6/site-packages/xarray/backends/api.py in open_dataset(filename_or_obj, group, decode_cf, mask_and_scale, decode_times, autoclose, concat_characters, decode_coords, engine, chunks, lock, cache, drop_variables, backend_kwargs)
344 lock = _default_lock(filename_or_obj, engine)
345 with close_on_error(store):
--> 346 return maybe_decode_store(store, lock)
347 else:
348 if engine is not None and engine != 'scipy':
~/miniconda3/envs/pangeo/lib/python3.6/site-packages/xarray/backends/api.py in maybe_decode_store(store, lock)
256 store, mask_and_scale=mask_and_scale, decode_times=decode_times,
257 concat_characters=concat_characters, decode_coords=decode_coords,
--> 258 drop_variables=drop_variables)
259
260 _protect_dataset_variables_inplace(ds, cache)
~/miniconda3/envs/pangeo/lib/python3.6/site-packages/xarray/conventions.py in decode_cf(obj, concat_characters, mask_and_scale, decode_times, decode_coords, drop_variables)
428 vars, attrs, concat_characters, mask_and_scale, decode_times,
429 decode_coords, drop_variables=drop_variables)
--> 430 ds = Dataset(vars, attrs=attrs)
431 ds = ds.set_coords(coord_names.union(extra_coords).intersection(vars))
432 ds._file_obj = file_obj
~/miniconda3/envs/pangeo/lib/python3.6/site-packages/xarray/core/dataset.py in __init__(self, data_vars, coords, attrs, compat)
363 coords = {}
364 if data_vars is not None or coords is not None:
--> 365 self._set_init_vars_and_dims(data_vars, coords, compat)
366 if attrs is not None:
367 self.attrs = attrs
~/miniconda3/envs/pangeo/lib/python3.6/site-packages/xarray/core/dataset.py in _set_init_vars_and_dims(self, data_vars, coords, compat)
381
382 variables, coord_names, dims = merge_data_and_coords(
--> 383 data_vars, coords, compat=compat)
384
385 self._variables = variables
~/miniconda3/envs/pangeo/lib/python3.6/site-packages/xarray/core/merge.py in merge_data_and_coords(data, coords, compat, join)
363 indexes = dict(extract_indexes(coords))
364 return merge_core(objs, compat, join, explicit_coords=explicit_coords,
--> 365 indexes=indexes)
366
367
~/miniconda3/envs/pangeo/lib/python3.6/site-packages/xarray/core/merge.py in merge_core(objs, compat, join, priority_arg, explicit_coords, indexes)
433 coerced = coerce_pandas_values(objs)
434 aligned = deep_align(coerced, join=join, copy=False, indexes=indexes)
--> 435 expanded = expand_variable_dicts(aligned)
436
437 coord_names, noncoord_names = determine_coords(coerced)
~/miniconda3/envs/pangeo/lib/python3.6/site-packages/xarray/core/merge.py in expand_variable_dicts(list_of_variable_dicts)
209 var_dicts.append(coords)
210
--> 211 var = as_variable(var, name=name)
212 sanitized_vars[name] = var
213
~/miniconda3/envs/pangeo/lib/python3.6/site-packages/xarray/core/variable.py in as_variable(obj, name)
112 'dimensions %r. xarray disallows such variables because they '
113 'conflict with the coordinates used to label '
--> 114 'dimensions.' % (name, obj.dims))
115 obj = obj.to_index_variable()
116
MissingDimensionsError: 'siglay' has more than 1-dimension and the same name as one of its dimensions ('siglay', 'node'). xarray disallows such variables because they conflict with the coordinates used to label dimensions.
```
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2233/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
485988536 | MDU6SXNzdWU0ODU5ODg1MzY= | 3269 | Accessing COG overviews with read_rasterio | rsignell-usgs 1872600 | closed | 0 | 3 | 2019-08-27T19:21:07Z | 2021-07-30T07:09:14Z | 2021-07-30T07:09:14Z | NONE | It's considered best practice to create cloud-optimized geotiff (COG) with overviews, which are essentially copies of the dataset at different resolutions to allow fast representation at different scales. It would be nice if we could pick a specific overview using Currently we need to use Rasterio to find out what the overlays are, for example:
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3269/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
345354038 | MDU6SXNzdWUzNDUzNTQwMzg= | 2323 | znetcdf: h5netcdf analog for zarr? | rsignell-usgs 1872600 | closed | 0 | 4 | 2018-07-27T20:17:58Z | 2020-07-28T06:25:33Z | 2020-07-28T06:25:33Z | NONE | I've been making good use of the zarr backend via So just as we have h5netcdf "Pythonic interface to netCDF4 via h5py", we could have "z5netcdf", a "Pythonic interface to netCDF4 via Zarr". I see that @shoyer previously had this idea: https://github.com/pydata/xarray/issues/1223#issuecomment-274230041 and also @rabernat https://github.com/pydata/xarray/pull/1528#issuecomment-325226495 thinks it would be a good idea, so I'm just piling on from a user perspective! |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2323/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
497823072 | MDU6SXNzdWU0OTc4MjMwNzI= | 3339 | Version 0.13 broke my ufunc | rsignell-usgs 1872600 | closed | 0 | 5 | 2019-09-24T17:25:09Z | 2019-09-24T20:32:40Z | 2019-09-24T19:56:17Z | NONE | This simple xarray ufunc to calculate wind speed worked under ```python-tracebackValueError Traceback (most recent call last) <ipython-input-4-2ac66965ccfc> in <module> ----> 1 windspeed = xr.ufuncs.sqrt(ds['u-component_of_wind_height_above_ground']2 + ds['v-component_of_wind_height_above_ground']2) /srv/conda/envs/notebook/lib/python3.7/site-packages/xarray/core/dataarray.py in func(self, other) 2495 else f(other_variable, self.variable) 2496 ) -> 2497 coords = self.coords._merge_raw(other_coords) 2498 name = self._result_name(other) 2499 /srv/conda/envs/notebook/lib/python3.7/site-packages/xarray/core/coordinates.py in _merge_raw(self, other) 128 else: 129 # don't align because we already called xarray.align --> 130 variables = expand_and_merge_variables([self.variables, other.variables]) 131 return variables 132 /srv/conda/envs/notebook/lib/python3.7/site-packages/xarray/core/merge.py in expand_and_merge_variables(objs, priority_arg) 380 expanded = expand_variable_dicts(objs) 381 priority_vars = _get_priority_vars(objs, priority_arg) --> 382 variables = merge_variables(expanded, priority_vars) 383 return variables 384 /srv/conda/envs/notebook/lib/python3.7/site-packages/xarray/core/merge.py in merge_variables(list_of_variables_dicts, priority_vars, compat) 202 else: 203 try: --> 204 merged[name] = unique_variable(name, var_list, compat) 205 except MergeError: 206 if compat != "minimal": /srv/conda/envs/notebook/lib/python3.7/site-packages/xarray/core/merge.py in unique_variable(name, variables, compat, equals) 116 out = out.compute() 117 for var in variables[1:]: --> 118 equals = getattr(out, compat)(var) 119 if not equals: 120 break /srv/conda/envs/notebook/lib/python3.7/site-packages/xarray/core/variable.py in broadcast_equals(self, other, equiv) 1574 except (ValueError, AttributeError): 1575 return False -> 1576 return self.equals(other, equiv=equiv) 1577 1578 def identical(self, other): /srv/conda/envs/notebook/lib/python3.7/site-packages/xarray/core/variable.py in equals(self, other, equiv) 1558 try: 1559 return self.dims == other.dims and ( -> 1560 self._data is other._data or equiv(self.data, other.data) 1561 ) 1562 except (TypeError, AttributeError): /srv/conda/envs/notebook/lib/python3.7/site-packages/xarray/core/duck_array_ops.py in array_equiv(arr1, arr2) 200 with warnings.catch_warnings(): 201 warnings.filterwarnings("ignore", "In the future, 'NAT == x'") --> 202 flag_array = (arr1 == arr2) | (isnull(arr1) & isnull(arr2)) 203 return bool(flag_array.all()) 204 /srv/conda/envs/notebook/lib/python3.7/site-packages/dask/array/core.py in eq(self, other) 1740 1741 def eq(self, other): -> 1742 return elemwise(operator.eq, self, other) 1743 1744 def gt(self, other): /srv/conda/envs/notebook/lib/python3.7/site-packages/dask/array/core.py in elemwise(op, args, kwargs) 3765 for a in args 3766 ), -> 3767 *blockwise_kwargs 3768 ) 3769 /srv/conda/envs/notebook/lib/python3.7/site-packages/dask/array/blockwise.py in blockwise(func, out_ind, name, token, dtype, adjust_chunks, new_axes, align_arrays, concatenate, meta, args, kwargs) 143 144 if align_arrays: --> 145 chunkss, arrays = unify_chunks(args) 146 else: 147 arginds = [(a, i) for (a, i) in toolz.partition(2, args) if i is not None] /srv/conda/envs/notebook/lib/python3.7/site-packages/dask/array/core.py in unify_chunks(args, *kwargs) 3034 3035 arginds = [ -> 3036 (asanyarray(a) if ind is not None else a, ind) for a, ind in partition(2, args) 3037 ] # [x, ij, y, jk] 3038 args = list(concat(arginds)) # [(x, ij), (y, jk)] /srv/conda/envs/notebook/lib/python3.7/site-packages/dask/array/core.py in <listcomp>(.0) 3034 3035 arginds = [ -> 3036 (asanyarray(a) if ind is not None else a, ind) for a, ind in partition(2, args) 3037 ] # [x, ij, y, jk] 3038 args = list(concat(arginds)) # [(x, ij), (y, jk)] /srv/conda/envs/notebook/lib/python3.7/site-packages/dask/array/core.py in asanyarray(a) 3609 elif hasattr(a, "to_dask_array"): 3610 return a.to_dask_array() -> 3611 elif hasattr(a, "data") and type(a).module.startswith("xarray."): 3612 return asanyarray(a.data) 3613 elif isinstance(a, (list, tuple)) and any(isinstance(i, Array) for i in a): ValueError: cannot include dtype 'M' in a buffer ``` Is this a bug or a feature that I should be handling differently in my code? Output of
|
{ "url": "https://api.github.com/repos/pydata/xarray/issues/3339/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
314326128 | MDU6SXNzdWUzMTQzMjYxMjg= | 2057 | Problem reading dtype=S64 with open_zarr | rsignell-usgs 1872600 | closed | 0 | 1 | 2018-04-14T12:42:52Z | 2018-04-30T17:17:27Z | 2018-04-30T17:17:27Z | NONE | @jhamman suggested I raise this SO question as an issue here. I have a dataset that looks like:
When writing this dataset using This example illustrates the problem: ```python import xarray as xr import s3fs f_zarr = 'rsignell/nwm/test02' ValueError Traceback (most recent call last) <ipython-input-3-fff1cd753e7c> in <module>() 2 fs = s3fs.S3FileSystem(anon=False) 3 d = s3fs.S3Map(f_zarr, s3=fs) ----> 4 xr.open_zarr(d) /opt/conda/lib/python3.6/site-packages/xarray/backends/zarr.py in open_zarr(store, group, synchronizer, auto_chunk, decode_cf, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables) 476 477 variables = OrderedDict([(k, maybe_chunk(k, v)) --> 478 for k, v in ds.variables.items()]) 479 return ds._replace_vars_and_dims(variables) 480 else: /opt/conda/lib/python3.6/site-packages/xarray/backends/zarr.py in <listcomp>(.0) 476 477 variables = OrderedDict([(k, maybe_chunk(k, v)) --> 478 for k, v in ds.variables.items()]) 479 return ds._replace_vars_and_dims(variables) 480 else: /opt/conda/lib/python3.6/site-packages/xarray/backends/zarr.py in maybe_chunk(name, var) 471 token2 = tokenize(name, var._data) 472 name2 = 'zarr-%s' % token2 --> 473 return var.chunk(chunks, name=name2, lock=None) 474 else: 475 return var /opt/conda/lib/python3.6/site-packages/xarray/core/variable.py in chunk(self, chunks, name, lock) 820 data = indexing.ImplicitToExplicitIndexingAdapter( 821 data, indexing.OuterIndexer) --> 822 data = da.from_array(data, chunks, name=name, lock=lock) 823 824 return type(self)(self.dims, data, self._attrs, self._encoding, /opt/conda/lib/python3.6/site-packages/dask/array/core.py in from_array(x, chunks, name, lock, asarray, fancy, getitem) 1988 >>> a = da.from_array(x, chunks=(1000, 1000), lock=True) # doctest: +SKIP 1989 """ -> 1990 chunks = normalize_chunks(chunks, x.shape) 1991 if name in (None, True): 1992 token = tokenize(x, chunks) /opt/conda/lib/python3.6/site-packages/dask/array/core.py in normalize_chunks(chunks, shape) 1918 raise ValueError( 1919 "Chunks and shape must be of the same length/dimension. " -> 1920 "Got chunks=%s, shape=%s" % (chunks, shape)) 1921 1922 if shape is not None: ValueError: Chunks and shape must be of the same length/dimension. Got chunks=(3, 64), shape=(3,) ``` The full notebook is at https://gist.github.com/rsignell-usgs/dce09aae4f7cd174a141247a56ddea2c |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/2057/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
105688738 | MDU6SXNzdWUxMDU2ODg3Mzg= | 567 | Best way to find data variables by standard_name | rsignell-usgs 1872600 | closed | 0 | 6 | 2015-09-09T21:32:02Z | 2016-08-03T17:53:42Z | 2016-08-03T17:53:42Z | NONE | Is there a way to return the data variables that match a specified I came up with this, but maybe the functionality already exists or there is a better way.
as in this example: http://nbviewer.ipython.org/gist/rsignell-usgs/5b263906e92ce47bf05e |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/567/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue | ||||||
95222803 | MDU6SXNzdWU5NTIyMjgwMw== | 476 | to_netcdf failing for datasets with a single time value | rsignell-usgs 1872600 | closed | 0 | 2 | 2015-07-15T15:26:02Z | 2015-07-16T02:17:31Z | 2015-07-16T02:17:31Z | NONE | In this notebook: http://nbviewer.ipython.org/gist/rsignell-usgs/047235496029529585cc, the
``` /home/usgs/miniconda/envs/ioos/lib/python2.7/site-packages/xray/conventions.pyc in infer_datetime_units(dates) 185 unique_timedeltas = np.unique(np.diff(dates[pd.notnull(dates)])) 186 units = _infer_time_units_from_diff(unique_timedeltas) --> 187 return '%s since %s' % (units, pd.Timestamp(dates[0])) 188 189 IndexError: too many indices for array ``` When there is a single value, I guess |
{ "url": "https://api.github.com/repos/pydata/xarray/issues/476/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 } |
completed | xarray 13221727 | issue |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [issues] ( [id] INTEGER PRIMARY KEY, [node_id] TEXT, [number] INTEGER, [title] TEXT, [user] INTEGER REFERENCES [users]([id]), [state] TEXT, [locked] INTEGER, [assignee] INTEGER REFERENCES [users]([id]), [milestone] INTEGER REFERENCES [milestones]([id]), [comments] INTEGER, [created_at] TEXT, [updated_at] TEXT, [closed_at] TEXT, [author_association] TEXT, [active_lock_reason] TEXT, [draft] INTEGER, [pull_request] TEXT, [body] TEXT, [reactions] TEXT, [performed_via_github_app] TEXT, [state_reason] TEXT, [repo] INTEGER REFERENCES [repos]([id]), [type] TEXT ); CREATE INDEX [idx_issues_repo] ON [issues] ([repo]); CREATE INDEX [idx_issues_milestone] ON [issues] ([milestone]); CREATE INDEX [idx_issues_assignee] ON [issues] ([assignee]); CREATE INDEX [idx_issues_user] ON [issues] ([user]);